CoOLING LAYING HENS BY INTERMITTENT
PARTIAL SURFACE SPRINKLING

H. J. Chepete, H. Xin

ABSTRACT. This study investigated the efficacy of intermittent partial surface sprinkling to cool caged layers at 20, 38,
and 56 weeks of age. Ten birds were used per age group with two birds per paired trial (Experiment, Expt, and Control,
Ctrl) that were subjected to an acute heat exposure of 40.0 = 0.5°C air temperature, 45 = 3% RH, and air velocity of 0.15
to 0.20 m/s for a maximum of 8 h. The Expt birds were sprinkled with water mist (8 mL/sprinkling session) on the head
and appendages at 15-min intervals from the time when panting was observed; whereas, the Ctrl birds received no
sprinkling. Continuous measurement of the rectal temperature and periodic thermographical measurement of the surface
temperature of the birds were performed. The intermittent partial surface sprinkling had the following merits as compared
with the control: lower body temperature rise (4.3 vs 5.7°C; P < 0.05), higher lethal heat load threshold (10.0 vs 6.6°C-h,
P < 0.05), longer survival time (145 to > 480 vs 92 to 266 min), and reduced mortality (20 to 60% vs 100%). The
maximum reduction in surface temperature of the head and appendages due to the sprinkling averaged 2.2°C. Under the
present environmental conditions (i.e., 40°C, 45% RH, and 0.15 to 0.20 nvs), sprinkling once every 5 to 6 min would
provide adequate cooling to prevent the surface temperature from rising. The concept of body heat load (B) seems to

provide an effective measurement of heat tolerance of the birds under different cooling schemes.
Keywords. Poultry, Heat stress, Evaporative cooling, Infrared thermography.

oultry are homeothermic in that they maintain a

relatively constant body temperature in spite of

wide environmental fluctuations. During heat

stress the unfeathered extremities such as comb
and wattles of fowl (Richards, 1971; Van Kampen, 1971;
Nolan et al., 1978) or the leg (Richards, 1971; Hillman et
al., 1982) are normally vasodilated. Van Kampen (1971)
reported that the total surface area of the comb and the
wattles accounts for about 10% of the total body surface,
and consequently the head and appendages play an
important role in heat dissipation.

Chickens and turkeys lack sweat glands and the
capability to perspire. Thus they lose excess heat primarily
by evaporating water through respiration and releasing heat
from surfaces such as wattles, shanks, and unfeathered
areas under wings (Carr and Carter, 1985). Research by
Carter (1981) revealed that (1) the ideal temperature range
for adult poultry is 21 to 26°C; (2) the effects of heat are
seen at temperatures above 26°C with heat prostration

Article was submitted for publication in May 1999; reviewed and
approved for publication by the Structures & Environment Division of
ASAE in April 2000. Presented as ASAE Paper No. 99-4219.

This is Journal Paper No J-18389 of the Towa Agriculture and Home
Economics Experiment Station, Jowa State University, Project No. 3311.
Financial support for the study was provided in part by the Multistate
Research Project NE 127 “Biophysical Models for Poultry Production
Systems”. Mention of vendor or product names is for presentation clarity
and does not imply endorsement by the authors or Iowa State University
nor exclusion of other suitable products.

The authors are H. Justin Chepete. ASAE Student Member,
Graduate Resecarch Assistant, and Hongwei Xin, ASAE Member
Engineer, Associate Professor, Agricultural and Biosystems Engineering
Dept., lowa State University, Ames, Jowa. Corresponding author: Dr. H.
Xin, Iowa State University, Agricultural and Biosystems Engineering
Dept., 203 Davidson Hall, Ames, IA 50011-3080, phone: 515.294.9778,
fax: 515.294.9773, e-mail: <hxin@iastate.edu>.

normally starting to have an impact at 35°C; and (3) feed
efficiency will suffer at temperatures below 21°C.

Ventilation of poultry buildings is provided by
mechanical means, i.e., fans in the sidewalls or wind
flowing through sidewall openings (Bottcher et al., 1995).
Air movement over the birds is especially critical during
hot weather when heat produced by the birds raises their
body temperature (Smith and Oliver, 1971) when the birds’
ability to lose heat is diminished. Increasing air velocity
significantly enhances the birds’ ability to dissipate heat by
convection. Maintaining air temperature at or above 35°C
for significant periods of time requires some temperature
reduction through evaporative cooling. High wind speeds
at 37.8°C or higher without evaporative cooling result in
increased thermal stress (Timmons and Hillman, 1993).

Pad systems are the most expensive of the evaporative
cooling systems feasible for poultry production; whereas,
misting and fogging systems are much more affordable.
The latter are thus the choice of many producers in the less
humid regions of the United States due to lower initial and
operating costs and the relative ease of installation in both
new and remodeled buildings (McNeill et al., 1980). Fine
mists can cause a more humid microenvironment and
inhibit cooling from the surface or respiratory pathway by
reducing the vapor pressure potential. Intermittent
sprinkling is important to allow time for the moisture to
evaporate. In humid areas, fans also are needed to increase
the evaporative cooling rate and fans may not be necessary
in drier areas or where natural ventilation is adequate.

In their evaluation of poultry mist-fog systems,
Timmons and Baughman (1983) conjectured that the
benefits obtained in these systems were primarily due to
surface wetting of the bird and subsequent evaporation by
heat supplied by the bird, thus increasing the heat loss of
the wetted bird. They further suggested that misting type
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systems should be designed o promote the wetting of the
bird instead ol an attempt to mist the air of the entire house
volume, thereby reducing the problem of wet litter,
cquipment, and/or feed. Surface or skin wetting has been
used 1o cool swine (MWPS, 1983: Punagakis ot al., 1992).
Studies conducted in Flonda, Kentucky, Missouri, and
Isracl showed that sprinkling and fan cooling systems
reduced heat stress in dairy cows (Bucklin et al., 1991,
Berry et al. (1990) applicd surface wetting on broilers with
low-volume nozzles at a flow rate ol 282 o/min and
reported reduced mortality due to heat stross. Sprivying was
performed no more than 30 (0 50 s every [0 min for the
hottest temperatures,

Infrared (IR) thermography has been vsed 1o 1dentily the
distribution of swrface temperatures and thus heat lor a
number of s (Clark and Stothers, 1980 Hhll e ol
T9K0; Karhonen and Harr, 1986) and loor heating devices
(Xin, 19983, Mohler and Heath (T988) concluded that the
thermographic method of measaring surloce lemperatuies
reveals much more wformaton about the contral amd
characteristics of heat loss fram a surfoce than does any
method micasaring lemperature at one or a few pomts,

Commereial laymg hen barns in fown e truditionally
not equipped with supplementad cooling syslems as
compared with those i the southern ated States hecause
of the ustorieally miikd swmmers. Cooling o the binds in
stnnmer s imited fo mereascd ventilaton rates through the
burus, A devistaiing week-long heal wave in July 1995
took o death oIl of LY nulbion laymy hens i tows,
prompting the lowa epg indistey 1o explore o costellective
conling syatem thal cuin be retralited Into existing baihs o
mstalled v the new ones T these commereiil laying hen
Buriis, birds nsuully Bave thei hends g appeindiges
sticing vat of iic cages uilo e wsles. Fhus, apun usiig
sprinklers installed along the aisles, the water droplets will
most likely fall onto the exposed head and appendages than
on the rest of the body—hence partial body surface
sprinkling.

The objectives of this study were to: (1) evaluate the
efficacy of partial body surface cooling of laying hens by
intermittent sprinkling as measured by physiological
responses of the birds; and (2) determine the application
frequency of the partial body surface cooling.

MATERIALS AND METHODS
EXPERIMENTAL BIRDS AND HANDLING

Three groups of layers of age 20, 38, and 56 weeks were
procured at different times from a local laying hen
company and used in the study. Two weeks prior to
procurement of each age group, the birds were kept in the
commercial houses at average temperatures of 28, 27, and
26°C with corresponding RH of 68, 68, and 61% for the
20, 38, and 56-week-old birds, respectively. For each
group, a total of 10 birds were used with two birds for each
paired trial (Experiment, Expt, and Control, Ctrl). Birds of
similar body weight were randomly selected at the farm
and ground-transported (130 km) to the Livestock
Environment and Animal Physiology (LEAP) Research
Laboratory at Iowa State University, Ames, Iowa. The
birds’ combs were traced on paper for later determination
of surface areas and thickness measured using a venier
caliper. Upon arrival at the LEAP laboratory, the birds were
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placed in holding cages and given feed and water
ad libitum for the entire experimental period. The feeding
and lighting regime at the LEAP laboratory was the same
as that on the farm, i.e., lights were turned on at 6:00 A,
and off at 9:00 pm. (15L:9D) for the 38 and 56-week-old
birds and on at 5:00 a.m. and off at 9:00 p.M. with an extra
2h of midnight feeding for the 20-weck-old birds
(18L:613). The birds were held at room temperature ol 24 %
0.5°C and 55 % 5% relative humidity (RH).

CONDITIONING AND TESTING CHAMBERS

One of the environmental chambers (1.8 Lo x 1.5 W X
24 H m cach) v the LEAP laboratory wus used to
precondition the air drawn from the labotatory belore being
drawn further into a smaller testing chamber (61 W x
109 Lo 162 H em) that held birds during the trial (fip. 1),
Both the conditioning and testing chambers were well
insulated. The temperature and RH were 41 4 1°C and 41 #
3%, respectively, o the conditioning chamber and 40 %
0.25°C and 45 & 3%, respectively, in the testing chinber,

Heating of air in the conditioning chamber was achieved
with two 1000 1o 1500 W electrical heaters (Model Ta21,
Rival Munulucturing Company, Kansas City, Missouri) and
vontrolled with a fully programmable data logger and
controller (Model CRIO. Campbell Seieotilic Tue.. Logan,
Utah) vin o temperatine/RE probe (Model TIMP 35C,
Camypbell Scientitic, Inc located in the plenum ol the
testing chamber. The CRIO controller for heaters i the
conditioning chamber utilized the rtesting chamber
termperature set point of 40°C, A single humidilicr and
witter reservoir dnder the wire mesh [loor in the
conditioning chumber helped 1 huinidifving tie wur. These
were relillad 1 full capaeity each fume just belore the staft
ol each trial.

Suction of hot air from the conditioning chamber into
the testing chamber was achieved using a 10-cm-diameter
variable-speed in-line duct blower. Two 10-cm-diameter
flexible insulated ducts conveyed the hot air from the
blower into the testing chamber via a “Y” PVC outlet
connection from the blower (see fig. 1). Hot air entered the
testing chamber from the top, with one duct blowing
directly over one of the two testing chamber compartments
housing either the Expt or the Ctrl bird. A PVC air
distribution panel with 2.5-cm-diameter holes spaced
2.5 cm apart was placed 23 cm from the inside top of the
chamber to ensure reasonably uniform air distribution and
an air velocity of 0.15 to 0.20 m/s at the bird level below.
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Figure 1-Schematic representation of the experimental setup.
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The two compartments (122 H x 41 W x 46 L. cm each)
were divided with an opaque PVC panel from the bottom
up to the air distribution panel. Each compartment housed a
wire mesh cage measuring 89 H x 41 W x 46 L. cm. The
cages were supported 14 ¢m from the base. Across the
middle of each compartment base were two adjustable
S-cm-diameter holes for the exhaust air. On the side of
each compartment, a small window (18 L x 6 W cm)} was
added to observe the birds {rom outside, and a 3 L x 2 W-
cm hole was drilled next to the window for the sprayer
lance to be inserted for sprinkling.

At the center top of the testing chamber, @ hole was
drilled to 11t an infrared (IR) camera (Model PM250,
Inframetrics, North Bitlerica. Massachusetts). When
mounted in place, the IR camera (discernable of 0.06°C)
could capture images of both birds below in a single shot,
The IR camera was controlled with a PC and its oulput was
connected to a monitor, Thermal emissivity of 0.95 and
background temperature of 40°C were set in the IR camera,
Behavior of the birds were also monitored and videotaped
using two CCD, high-speed apertwe color video cameras
(Panasonic WV-CP410 serics) mounted in cach
compartinent, a tme lapse VOR (Model AG 6730,
Panasonic Services Co.), a yuad system (Maodel W1 420,
Panusonic Services Co.), and a TV monitor.

Nipple waterers and trough feeders were provided in
each compartment to supply water and feed ad libitum.
Hhumination was provided with un 8 W fluorescent light,

Tar Hear EXposure TRIALS

Two birds were rundomly removed from the holding
chumber, weighed. and randainly allocuted to the
treatinents, Bach bied had a reetal temperatiure probe
(accuracy of 0.1°C. Model P1907, Page Scientitic, lnc.,
Charlotte, North Carolina) inserted into the rectum and
surgically stitched onto the anus with needle and thread. A
thin strip of adhesive tape was used to further secure the
sensor onto the birds’ tail feathers. Care was taken in
handling the birds to ensure that they could still lay and
defecate freely. Both birds were then kept overnight (11 to
12 h) under thermoneutrality (24°C) in the testing chamber
to get acclimatized to the physical environment.

Both rectal temperature probes were connected to a
pocket logger (Model XR340, Pace Scientific, Inc.) for
data collection and storage. Ambient temperature and RH
sensors were also placed at the bird level and connected to
the same pocket logger for each bird. Fresh room air was
provided throughout the acclimation period. The pocket
loggers were connected to a laptop computer to monitor
and record the temperature and RH readings. Sampling
interval for all temperatures and RH was 20 s.

Following acclimation, at about 7:00 A.M., the heat
exposure was started by turning on heaters and the
humidifier in the conditioning chamber via the CR10
controller. Sprinkling of the Expt bird with tap water was
started upon onset of panting and repeated every 15 min to
the end of the 8 h of the trial duration or to the point of
death. The Ctrl bird was not sprinkled at any time.
Sprinkling was done on the head, head appendages, and
neck using a 3.8-L capacity Hudson leader sprayer (Model
60071, H. D. Manufacturing Company, Hastings,
Minnesota) releasing about 8 mL/sprinkling session.
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The time of bird death was recorded. The birds were
considered dead when no breathing movement was
observed {rom the zoomed image on the TV monitor and
looking directly through the observation window of the
testing chamber. This was further verified by checking
against the peak/lethal temperature point (where the birds
would normally die) after the data had been downloaded.

Recording of the IR images was made at the start of the
trial, just before sprinkling, just after sprinkling, and 1, 5,
and 15 min after sprinkling. The next set of five images
was taken after a 2-h time interval, making a maximum
total of four sets of five images for cach trial. Birds were
videotaped for the entire tria] duration or stopped only
when both birds were dead. A record of behavior, physical
responses, and death time of the birds was noted.

At the end of each trial, dead bird(s) were disposed of
hy incineration and live bird(s) were euthanized and
disposed of. The holding and testing chambers were
disinfected before the next batch of birds were brought in
from the laying hen larm,

QUANTIFICATION OF BIRD TOLERANCE 't0 HEAT STRESS
The concept of heat Toad (B was used to mieasure the
treatment effects on heal tolerance of the birds. n
particular, the term Jethal heat load (B was introduced to
define the maximum heat foad that the birds could cope
with before death oceurs. The heat load. 3, was defined us:

N

P= ¥ Tum e Tapmyl % -V (h
z_‘] 0 ) 1600

wlierg
B = body heat load (°C-h)
Ty = body temperature at sampling time i

b(TN) = Iean _body temperature under thermo-
neutrality (°C)

¢} = sampling time interval (s) (68 = 20 s)
N = number of discrete sampling points
DATA ANALYSIS

Analysis of variance (ANOVA) was performed to
determine the differences in body temperature change and
heat load tolerance within and between age groups for the
Expt versus Ctrl and interaction between age and
treatment. JR images were analyzed to obtain the average
surface temperature and its changes for the head and
appendages during the 15-min sprinkling sessions.

RESULTS AND DISCUSSION
CoRe BopY TEMPERATURES (Ty,)

Table 1 summarizes the responses of the laying hens
exposed to heat stress. Mortality was 100% for all the Ctrl
groups as compared with 20 to 60% for the Expt groups.
This outcome demonstrated that sprinkling the birds with
water has a positive effect on their survival under heat
stress. Specifically, in the Expt group mortality was 60%,
40%, and 20%, respectively, for the 20, 38, and 56-week-
old birds. The higher mortality for the younger birds could
be attributed to the fact that the older birds were
physiologically more heat tolerant because of less plumage
cover and much larger combs and wattles (fig. 2) that
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Table 1. Summary of the responses of laying hens exposed to heat stress with or without head sprinkle cooling (Expt and Ctrl)
(five birds were involved for each age group within the treatment)

Age BM (kg) Mortality Survival Time (min) Body Heat Load, B (°C-h)
Trt (wk) Died Lived Combined (%) Died Lived Died Lived Combined
Expt 20 1.27 (0.06) 1.30 (0.00) 1.28 (0.04) 60 233 (31) > 480 11.1 (0.2) 20.1 (3.5) 14.7 (1.5)
38 1.59 (0.05) 1.47 (0.08) 1.52 (0.06) 40 207 (11) >480 106 (1.6)  12.1(0.5) 11.5(0.9)
56 1.44 (0.00) 1.52(0.07) 1.50 (0.05) 20 145 (0 > 480 5.3 (0.00) 12.9 (2.3) 11.3(1.8)
Overall 1.41 (0.05)2  1.45(0.06) 1.43 (0.05)2 40 (20) 210192  >480 10.0 (0.6)2 14.2 (2.0) 12.5 (1.4p
Ctrl 20 1.31 (0.04) = 1.31 (0.04) 100 179 (22) - 8.6 (0.3) - 8.6 (0.3)
38 1.50 (0.05) - 1.50 (0.05) 100 113 (12) - 54(0.7) - 5.4(0.7)
56 1.51 (0.04) === 1.51 (0.04) 100 130 (5) - 5.6 (0.3) - 5.6(0.3)
Overall 1.44 (0.04)2 - 1.44 (0.04)2 100 (0) 141 (13)b - 6.6 (0.4)P --- 6.6 (0.4)0
LSD 0.10 0.03 37 1.2 2.4
Table 1 (continued). Summary of the responses of laying hens exposed to heat Comparison of the survival time shows that for all age
stress with or without head sprinkle cooling (Expt and Ctrl) . . . '
(five birds were involved for each age group within the treatment) groups, those that received sprinkling had a longer sumv?]
Bodv T e time of 145 to > 480 min as compared with 92 to 266 min
y Temperature (Tj,) Rise (°C) 4 : i
Averege o — for the Ctrl counterparts. This outcome provides additional
Age evidence of the beneficial effects of the sprinkling practice.

Trt (wk) Died Lived Combined Died Lived Combined

Expt 20 30(04) 25(0.5) 28(03) 6.0(02) 4.0(0.1) 52(0.5)
38 31(03) 15(0.1) 21(04) 52(0.1) 39(07) 4.4(0.5)
56  20(00) 1.6(0.3) 1.9(02) 3.4(0.0) 3.5(0.5 3.4(03)

Overall 2.8(03% 1.8(02) 22(03)2 53(0.1)2 37(0.5) 43(0.5% e

Smith and Oliver (1970) reported that hens can withstand
short periods of exposure to air temperatures higher than

Cul 20 32(0.1) -  32(0.1) 58(02) -  58(0.2)
38 28(0.1) -  28(01) 5806 -  58(0.6)
s6  26(0.1) .-  26(0.1) 54(03) -  54(03)

Overall 29(0.1®8 -  29(0.1)b 57042 - 57040
LSD 04 03 0.9 08

Note: Values in parentheses are standard errors of the means.
Overall column means between treatments with the same letter are not significantly
different (P > 0.05).

1*

1
enhanced heat loss through their surface (evaporation and
sensible heat loss). On average, the combs had surface
areas of 171, 227, and 252 mm?2 with corresponding
thickness of 4.0, 4.5, and 4.0 mm for the 20, 38, and 56-
week-old birds, respectively. This result was consistent
with the reported increase in heat tolerance of naked-neck
chickens (Cahaner et al., 1993) and that reduced feather
cover are advantageous in thermoregulation at high
ambient temperatures by increasing sensible heat loss
(Eberhart and Washburn, 1993a; Yalcin et al., 1997). (h3-week:old en

1

1°

(a) 20-week-old hen (c) 56-week-old hen

Figure 2-Typical head appendages for the 20, 38, and 56-week-old laying hens (1 in. = 25.4 mm).
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40°C. Squibb (1959) noted that hens could withstand a
temperature of 44°C for 1 h.

All the birds had a thermoneutral (TN) body
temperature of 40 to 41°C, which agrees with the literature
values of 40 to 43°C. The Ctrl birds showed a higher body
temperature rise above the TN level (4.7 to 8.2°C) than
their Expt counterparts (2.5 to 6.4°C) (P < 0.05). The
lower body temperature rise for the Expt group could be
attributed to the sprinkling effect, which enhanced heat
dissipation from the birds via surface evaporation and
consequently resulting in reduced body heat buildup and
temperature rise. Wilson and Hillerman (1952) reported a
0.11°C reduction in body temperature over 90 min for
White Leghorns kept at 31.1 to 32.8°C air temperature,
with head-wetting done once for 30 s with 40 mL of water
at 23.9°C.

There was no interaction between age and treatment
(P > 0.05) for body temperature changes. Therefore,
comparison of the pooled means (table 1) was conducted
and significant difference (P < 0.05) was noted between the
Expt and Ctrl for both maximum and average T), rise. The
pooled mean Ty, rise was 2.2 and 2.9°C, and the maximum
T, rise was 4.3 and 5.7°C for the Expt and Ctrl,
respectively. This result also indicates the merits of
sprinkling in reducing heat stress of the birds.

BobY HEAT Loab (B)

As shown by the heat load data in table 1, the Expt birds
were able to tolerate more heat load as compared with the
Ctrl birds, which absorbed lesser heat load by the time they
died of hyperthermy. On average, the Ctr] birds had a lethal
heat load (B)) of 8.6, 5.4, and 5.6°C-h for the 20, 38, and
56-week-old birds, respectively, as compared with 11.1,
10.6, and 5.3 (only one bird) °C-h for their respective Expt
counterparts. The B; values for the Ctrl birds suggest that
the younger Ctrl birds (with lighter body mass of 1.3 kg)
actually coped with the heat better than the older ones
(with heavier body mass of 1.5 kg), as also evidenced by
their longer survival time (179 vs 113 ~ 130 min). This
outcome was speculated to arise from the lower metabolic
mass (WO.75) for the younger/lighter birds. The same
younger Expt birds with smaller combs and wattles,
however, apparently could not take advantage of the
sprinkling cooling as well as the older birds with larger
combs and wattles, as reflected by their higher mortality.
The Expt birds that survived had an average § of 20.1,
12.1, and 12.9°C-h for the 20, 38, and 56-week-old birds,
respectively.

PARTITION OF 3 AND T}, RISE FOR THE EXPT BIRDS INTO
‘LIVE’ AND ‘DEAD’

Table 1 further shows partitioning of the Expt birds into
those that “died” and those that “lived”. The Expt birds that
died had an average B, of 10.0°C-h as compared with B of
14.2°C-h for the Expt birds that lived. 3; averaged 11.1 and
10.6°C-h for 20 and 38-week-old birds, respectively. The
birds that lived had B of 20.1, 12.1, and 12.9°C-h for the
20, 38, and 56-week-old birds, respectively. This result
reveals that the younger (lighter) surviving birds retained
more [ compared with the older (heavier) birds.

Table 1 shows that the Expt birds that died had a higher
average Ty, rise than the Expt birds that lived (2.8 vs 1.8°C,
respectively). Ty, rise for the Ctrl birds (all dead) averaged
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Figure 3-Typical body temperature (T}) (a), and body heat load ()
(b) profiles of 20-week-old laying hens subjected to heat exposure
with or without intermittent sprinkle cooling of the head appendages
(Subscript ¢ = Ctrl; e = Expt).

2.9°C. The dead birds had an average maximum T, rise of
6.0 and 5.2°C at 20 and 38 weeks of age, respectively. This
result is consistent with the report by Moreng and Shaffner
(1951) that the birds have an upper lethal body temperature
of about 47.3°C (5 to 6°C above TN T}). The maximum T},
rise for the Expt birds was further divided into that of dead
birds, 5.3°C, and that of survived birds, 3.7°C (table 1).
The Ctrl birds had an overall maximum Ty, rise of 5.7°C.

DYNAMIC PROFILES OF Ty, AND B

Figure 3a shows a typical dynamic profile of Ty, during
part of the acclimation period and the course of heat
exposure while figure 3b shows B during the course of heat
exposure. It can clearly be seen from figure 3a that the Ctrl
and Expt birds had similar rectal temperatures during the
acclimation period. It is also evident that after the start of
heat exposure, both birds started to experience an increased
rectal temperature. Wilson (1948) stated that change in air
temperature is the most likely factor to alter T}, of laying
hens, particularly if it is increased above 32°C. Lethal peak
Tys were reached as heat production exceeded heat loss,
causing T}, to rise uncontrollably (Lee et al., 1945; Wilson,
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1948), and then they dropped soon after the birds died. The
Ctrl birds always gained heat faster and died much sooner
than did the Expt birds. Figure 3b depicts that at any one
time before death the Ctrl birds had a consistently higher B
or heat gain. Also, the Expt birds were able to absorb
considerably more B than the Ctrl counterparts due to
sprinkling effect, which made them more heat tolerant.

These results demonstrate that sprinkle cooling had a
positive effect in relieving the birds of heat stress through
reduced rate of heat load gain that consequently reduced
the rate of Ty, rise. Hence, the Expt birds were able to live
longer. Death did come ultimately in some Expt birds as
B reached lethal levels for the birds.

ANALYSIS OF THERMOGRAPHS

Both Expt and Ctrl birds had similar average surface
temperatures at the start of the trials. All the Ctrl birds died
prior to the second session of thermographical recording
(about 165 min into the heat exposure). This short survival
period was presumably attributed to the lack of cooling,
which subjected the birds to heat prostration. On average,
during sprinkling session no. 1 the Ctrl birds had higher
average surface temperatures compared with the Expt birds
in all the three age groups. This agrees with the expected
effects of sprinkling in that it would reduce the surface
temperature via evaporation which in turn enhance heat
dissipation of the birds, consequently reducing Ty,

Table 2 shows that the Expt birds had an overall pooled
mean surface temperature 37.0, 36.6, and 37.5°C,
respectively, for the 20, 38, and 56-week-old birds just
after sprinkling. Fifteen minutes after the sprinkling, the
surface temperatures increased to 39.8, 39.5, and 39.7°C
for the 20, 38, and 56-week-old birds, respectively.

Table 3 shows the overall pooled mean reduction in
surface temperature of the head and appendages tor the 20,
38, and 56-week-old birds, respectively. The largest surface
temperature reduction occurred just after and 1 min after
sprinkling and then reduced thereafter. The overall mean
reduction in surface temperature for the 20, 38, and 56-
week-old birds was, respectively, 2.1, 2.2, and 2.1°C just
after sprinkling; 1.3, 1.4, and 1.4°C at 1| min after

Table 2. Changes in pooled mean surface temperature (°C) of head
and appendages for the four sprinkling sessions of the Expt birds

Time after Sprinkling (min)

Age . . I o
(wk) 0- 0+ 1 5 15

20 39.0(0.5) 37.0(0.4) 37.7(0.5) 38.6(04) 39804
38 38.7(0.3) 36.6(0.3) 37.3(0.3) 385(04) 395(0.2)
56 39.5(0.5) 37.5(0.3)  38.1(0.5) 39004 39.7(0.3)
Note: 0- = just before sprinkling.

O+ = just after sprinkling.
Values in parentheses are standard errors of the means.

Table 3. Pooled mean change in surface temperature (°C) of head and
appendages for the four sprinkling sessions of the Expt birds

Time after Sprinkling (min)

Age . e
(wk) O+ I 5 15

20 -2.1(0.2) -1.3(0.3) —0.4(0.2) 0.7 (0.2)
38 -2.2(0.2) -1.4(0.3) 0.2 (0.4) 0.7 (0.3)
56 -2.1(0.3) -1.4(0.4) -0.5¢0.5) 0.2(0.5)

Note: 0+ = just after sprinkling.
Values in parentheses are standard errors of the means.
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sprinkling; 0.5, 0.2, and 0.5°C at 5 min after sprinkling. By
15 min after sprinkling, the surface temperature was
increased by an average of 0.7, 0.7, and 0.2°C,
respectively, for the three age groups. The results thus
suggest that under the present environmental conditions the
sprinkling interval should be less than 15 min. A 5 to 6-min
interval would be a conservative choice.

BEHAVIORAL OBSERVATIONS

The birds that lived longer or survived the trials were
observed to be particularly “smarter” than other birds in
terms of their behavioral response to the heat discomfort.
Although most birds were restless and began flying in the
chamber as temperature reached the mid 30°Cs, which
compounded the Ty rise. The “smarter” ones generally
remained calm (minimizing restlessness or flying) and
resorted to rigorous panting. They also held their wings
away from their bodies as Hutchinson (1954) also had
observed. Smith and Oliver (1971) demonstrated that the
level of heat production of a laying hen increases with
increasing body activity. The restless birds did so for about
20 to 25 min, after which they calmed down and panted
rigorously with wings held away from their bodies. There
was a noticeable reduction in T, in some birds after
adoption of this behavior and in others the temperature
kept increasing to the lethal point. Panting, which is
initiated by the increase in temperature of the blood
flowing to the brain (Randall, 1943), was observed to start
at ambient temperatures of about 34 to 36°C, with
noticeable rise in Ty, at about 36 to 37°C. Panting itself has
been reported to generate heat (Smith and Oliver, 1971).

It was also observed that on average, by the third
sprinkling session the birds would appear to “appreciate”
being sprinkled as they would no longer be scared by the
sprayer lance approaching their heads. In fact, some birds
would even stick out their heads towards the lance after
several sprinkling sessions.

All the birds were seen to start drinking water a few
minutes after they started panting (and stopped roughly
15 min afterwards). Hillerman and Wilson (1955) showed
that birds that consumed the most water withstood the
highest temperatures, while Fox (1951) observed that
survival time of fowls at high environmental temperature
(42°C) was positively correlated with the persistency with
which birds continued to drink.

None of the birds fed at all during the trials, which
agreed with the findings by Yahav et al. (1996) that to
avoid lethal increase in Ty, chickens minimize endogenous
heat production by reducing feed intake.

CONCLUSIONS

The efficacy of intermittent partial surface sprinkling of
water to cool caged layers at 20, 38, and 56 weeks of age
was investigated during an acute heat exposure to the
environmental conditions of 40°C air temperature, 45%
RH, and 0.15 to 0.20 m/s air velocity. The following
conclusions were drawn from this study:

» Partial surface cooling by intermittent sprinkling of
water is effective in relieving laying hens of heat
stress in that it reduces core body temperature and
head/appendages surface temperature, increases heat
tolerance, and reduces mortality of the birds.

TRANSACTIONS OF THE ASAE



¢ Under the present experimental conditions, an
application interval of 5 min for the partial surface
sprinkling seems appropriate.

+ The term body heat load (§) seems to provide an
effective measurement of heat tolerance of the birds
under different cooling schemes.
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