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ABSTRACT 

Forest plantations in the UK are often established on seasonally waterlogged peaty 

gley soils which often require site preparation (drainage and mounding) to lower the 

water table and prepare planting positions. Substantial changes in the physical 

environment of peaty gley soils can accompany site preparation including fluctuations 

in soil temperature and soil moisture. These and other changes can all affect soil 

properties and decomposition processes and well as the dynamics of CO2, CH4 and 

N2O. A field experiment was established at Harwood Forest (NE England) to 

investigate the effects of three site management practices (drainage, mounding and 

fertilisation) frequently used for afforestation and replanting on peaty gley soils in the 

UK on soil properties and various of C and N, environmental variables (soil 

temperature, water content and water table height) and emissions of CO2, CH4 and 

N2O. The relationship between GHG emissions and environmental variables was also 

examined. The experiment was laid out in a factorial split-plot design. Drainage 

decreased C and N concentration in the 10 cm soil layer. The soil bulk density in the 0 

to 20 cm soil layer was increased by mounding. Drainage and fertilisation increased 

soil CO2 efflux, whereas mounding did not affect soil CO2 efflux. All three practices 

affected soil CH4 fluxes with drainage reducing the fluxes and mounding and 

fertilisation increasing the fluxes. Nitrous oxide emissions were significantly affected 

by mounding and fertilisation, with mounding decreasing emissions and fertilisation 

increasing emissions. Soil temperature was the main environmental factor controlling 

soil respiration in this site. 

 

Over the two years study drainage and fertilisation increased the total greenhouse 

budget by 13.1% and 97.9%, while mounding caused a reduction of−17.6%. Drainage 

plus mounding reduced the total greenhouse budget by 6.9%, while drainage plus 

mounding plus fertilisation increased the total greenhouse budget by 101.8%. There is 

a potential for up-scaling GHG emissions from newly drained peaty gley for inclusion 

in the UK Land Use Land-Use Change and Forestry (LULUCF) Greenhouse Gas 

Inventory. However up-scaling and evaluation of the net emissions requires high 

quality data from different sites newly drained for afforestation. More studies are 

needed if net fluxes from newly drained sites are to the included in the LULUCF 

Greenhouse Gas Inventory. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL BACKGROUND 

 

Soil is an important natural resource that provides several important ecosystem 

functions, such as a medium for plant growth, and plays a key role in the water, 

carbon (C) and nutrient cycles of terrestrial ecosystems (Bauhus et al. 2002; Hopmans 

et al. 2005). The Earth’s soils are a major reservoir of C in terrestrial ecosystems and 

contain three times as much C as plants (Post et al. 1982, 1990; Eswaran et al. 1993) 

and twice as much C as the atmosphere as carbon dioxide (CO2) (Post et al. 1982; 

Davidson et al. 2000). World’s soils have the capacity to sequester CO2 emitted from 

anthropogenic activities if they are able to accumulate large quantities of soil organic 

matter (Post et al. 1982; Tian et al. 1998; 1999). The accumulation of organic matter 

in soils provides energy, substrate and the biological diversity that sustain numerous 

functions performed by soils (Franzluebbers 2002). 

 

The world’s forests are estimated to cover an area of 4.1 x 109 hectares (ha) (Dixon et 

al. 1994; Dixon and Wesniewski 1995) of which 187 × 106 ha are forest plantations 

(c.f., Zerva and Mencuccini 2005a). Forests of the world play an important role in the 

global C, nitrogen (N) and sulphur (S) cycles and sequester and conserve more C than 

all other terrestrial ecosystems (Dixon and Wesniewski 1995). Annually, forests 

account for some 90% of the C flux between the atmosphere and terrestrial 

ecosystems through their photosynthetic uptake and respiratory release of CO2 (Dixon 

and Wesniewski 1995). Forest ecosystems may be major sources of atmospheric CO2 

if they are clearfelled and converted to other land uses such as agriculture or 

following timber harvesting, fires etc. (Ewel et al. 1987a; Gordon et al. 1987; Weber 

1990). 

 

Brumme et al (2005) suggested that forests may store large quantities of C in soil and 

vegetation, thus mitigate increasing atmospheric CO2 and associated global climate 

change (Heath et al. 2005; Lal 2005). The amount of C stored in forest ecosystems 

depends on their location, type and the age of trees (Madeira et al. 2002). Post et al. 

(1982) summarised 2696 soil profiles from most terrestrial biomes and estimated that 
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forest soils contain 34% of the global organic C. According to Dixon et al (1994), the 

world’s forests contain 50% of the total terrestrial ecosystem C of 1146 Pg, of which 

787 Pg are stored in soils and 359 Pg in vegetation. Forest plantations have the 

potential to be managed to sequester atmospheric CO2, thus mitigate global climate 

change (Vitousek 1991; Madeira et al. 2002). Several studies have shown that 

intensively managed forest plantations have the potential to increase C sequestration 

by increasing net primary productivity (NPP) compared to degraded natural forests if 

they are composed of fast-growing trees growing on fertile sites (Delcourt and Hariss 

1980; Gladstone and Ledig 1990; Lal et al. 1998; Liski et al. 2002; Madeira et al. 

2002).  

 

The majority of the world’s forest plantations are located in the boreal and temperate 

region (Post et al. 1982; Jobbágy and Jackson 2000). The boreal and temperate 

planting sites are characterised by large stocks of organic matter, water-saturated 

soils, low temperatures and poor fertility (Bubier et al. 1998; Strom and Christensen 

2007). The growth of trees in these soils is impossible without drainage and soil 

preparation to improve aeration and planting conditions (Payandeh 1973; Armstrong 

et al. 1976; Lieffers and Rothwell 1986; Macdonald and Lieffers 1990). Waterlogging 

limits the supply of oxygen to plant roots which inhibits aerobic respiration, plant 

growth and survival (Saglio et al. 1983). Several studies demonstrated that trees 

growing in saturated soils are stunted in growth (Coutts and Philipson 1978; Sena-

Gomes and Kozlowski 1980a; Lieffers and Rothwell 1986). The lack of oxygen 

supply in saturated soils may limit deep rooting and lead to trees with shallow roots 

that are susceptible to windthrow (Coutts and Philipson 1978; Sena-Gomes and 

Kozlowski 1980a; Lieffers and Rothwell 1986). Most studies have concluded that 

stress caused by long-term waterlogging cause root decay and plant death (Pereira and 

Kozlowski 1977; Kozlowski and Pallardy 1979; Kozlowski 1984). 

 

Despite the widespread nature of waterlogging, peatlands around the world support 

large areas of productive forest plantations that have been established following 

intensive site preparation (Sutton 1993; Roy et al. 1999). According to Armentano 

and Menges (1986) draining peatlands for agriculture and forestry has been the most 

significant land use change in Europe in the last century. About 15 × 106 ha of 

peatland have been drained to increase plant biomass production in forests, 
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particularly in Fennoscandia and the former USSR (Armentano and Menges 1986; 

Paavilainen and Päivänen 1995). Large areas of deep peat and peaty gley soils have 

also been drained for forestry in the UK (Cannell et al. 1993; Byrne and Farrell 2005). 

Although current policy discourages further planting on peatland, a large estate of 

public and private forests now exists on organic soils in the UK and elsewhere. The 

NPP and biomass of the vegetation increase after drainage because of increased 

supply of oxygen in the root zone and the stimulation of mineralisation which 

increases the availability of nutrients (Dang and Lieffers 1989; Von Arnold et al. 

2005; Minkkinen et al. 2008). The increase in tree growth following drainage depends 

on site fertility. Several studies demonstrated that trees planted on drained fertile peat 

soils grow faster than those planted on nutrient-poor soils (Laine et al. 1995a; 

Minkkinen et al. 1999; Laiho et al. 2003). 

 

Water-saturated soils, low temperatures and poor aeration in peatlands have resulted 

in accumulation of organic matter as peat (Bubier et al. 1998; Borren et al. 2004; 

Ström and Christensen 2007; Ali et al. 2008). These ecosystems are net sinks for 

terrestrial C stocks (Alm et al. 1997; Vitt et al. 2000; Maljanen et al. 2001a; Wieder 

2001; Turunen et al. 2002; Roehm and Roulet 2003). The carbon balance of a wetland 

is sensitive to changes in soil water table depth. During dry summers natural wetlands 

can act temporarily as sources of C to the atmosphere (Alm et al. 1999). Water 

saturated organic soils may produce insignificant amounts of N2O (Martikainen et al. 

1993a, Nykänen et al. 1995, 2002; Regina et al. 1996, Liikanen et al. 2002). On the 

other hand, natural organic soils in the boreal and temperate region are significant 

sources of atmospheric methane (CH4) (Bartlett and Harriss 1993; Nykänen et al. 

1998; Bohn et al. 2007). However, when drained for forestry and agriculture, peatland 

soils may revert from C sinks to sources (Martikainen et al. 1995; Nykänen et al. 

1995, Silvola et al. 1996a; Minkkinen et al. 2007). Similarly, when the soil water table 

depth is lowered permanently, fertile wetlands may become sources of N2O 

(Martikainen et al. 1993a; Aerts and Ludwig 1997; Kasimir-Klemedtsson et al. 1997; 

Regina et al. 1996; 1999). In contrast, lowering the soil water table by drainage 

decreases CH4 emissions in peatlands due to decreased production with increased 

oxygen availability and increased consumption of methane in the aerobic soil layers 

by CH4 oxidising microorganisms (Moore and Knowles 1989; Roulet et al. 1993; 

Martikainen et al. 1995). A well-drained wetland may even be converted into a net 
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sink for atmospheric CH4 when methane consumption exceeds production (Freeman 

et al. 1993; Martikainen et al. 1995; Nykänen et al. 1998). 

 

1.2 JUSTIFICATION  

 

The British Isles has about 2.11 × 106 ha of deep peats (>45 cm depth), excluding 

lowland fens and an unknown area of shallow (<45 cm depth) peaty gley and iron 

pans (Cannell et al. 1993). Peatlands excluding fens are estimated to contain 3000 × 

106 tonnes (t) of C, 76% of which is located in deep peats (Harrison et al. 1995). 

Forest ecosystems cover some 3 × 106 ha or 12% of Britain’s land area (Forest 

Statistics 2008, http://www.forestry.gov.uk/website/forstats2008). Some 190 000 ha 

of deep peats and 315 000 ha of grassland on peaty gley soils are estimated to have 

been afforested with conifer species for commercial forestry between the 1950s and 

1980s (Cannell et al. 1993; Hargreaves et al. 2003; Byrne and Farrell 2005). 

 

Drainage followed by mounding is a common site preparation practice carried out 

prior to afforestation and replanting clearfelled plantations in upland peaty gley soils 

with seasonally high water table in the UK (Ball et al. 2007, Minkkinen et al. 2008). 

An increase in the growth rate of trees planted on drained peaty gley soils can be 

expected because of increased soil temperatures (e.g., Peterjohn et al. 1994; 

Kirschbaum 1995; Kätterer et al. 1998; Davidson et al. 1998) and increased oxygen 

availability (e.g., Hillman 1992; Peterjohn et al. 1994; Prevost et al. 1997) which may 

stimulate tree root growth and increase the rate of mineralisation of organic matter 

and nutrient cycling. Further management practices such as mounding and fertilisation 

carried out after drainage of peaty gley soils may further increase nutrient availability 

and improve the growth of planted trees. In turn, drainage, mounding and fertilisation 

may also alter the C and greenhouse gas (GHG) dynamics of peaty gley soils. 

Greenhouse gases (CO2, CH4 and N2O) are needed to prevent heat escaping from the 

surface of the earth. 

 

Most studies on soil organic C and GHG dynamics of drained peatlands across Europe 

pertain to boreal and continental peatlands (e.g., Martikainen et al. 1995; Minkkinen 

et al 1997; Minkkinen and Laine 1998a; Von Arnold et al. 2005). Although few 
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studies have investigated the C and GHG dynamics of forested and clearfelled forests 

on deep peat and peaty gleys soil in the UK (Hargreaves et al. 2003; Zerva and 

Mencuccini 2005a, 2005b; Zerva et al. 2005; Ball et al. 2007), the effects of site 

preparation for afforestation on soil properties and GHG fluxes have not been 

experimentally tested in peaty gley soils under temperate maritime conditions such as 

in the UK. 

 

1.3 AIMS OF STUDY 

 

The aims of this study were to evaluate: 

i) The effects of site preparation for afforestation on soil properties 

ii) The effects of site preparation for afforestation on environmental variables 

iii) The effects of site preparation on emissions of GHG (CO2, CH4 and N2O) 

iv) The relationships between GHG fluxes and environmental variables. 

 

1.4 THESIS STRUCTURE 

 

This thesis examines the effects of site preparation for afforestation on soil properties 

and GHG fluxes. The thesis consists of six chapters. 

 

Chapter 1: This chapter introduces the importance of soils on GHG fluxes and forests 

on C sequestration. It also provides justification and objectives of the study. It 

provides a review of literature on the importance of soils on organic C storage. It also 

gives a review on the effect of land use changes and fertilisation on soil C storage 

GHG fluxes (CO2 CH4 and N2O). Environmental factors affecting C storage and GHG 

fluxes are also reviewed in this chapter. The study site is also described in this 

chapter. 

 

Chapter 2: This chapter investigates the effects of forest management practices 

(drainage, mounding and fertilisation) on soil properties and various pools of C and N. 

The experimental design layout and preparation are described here. 
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Chapter 3: The effects drainage, mounding and fertilisation on soil temperature, 

water content and water table depth are investigated here. This chapter also examines 

the effect of these practices on soil CO2 efflux as well as relationships between soil 

CO2 fluxes and environmental variables. 

 

Chapter 4: In this chapter, the effects of drainage, mounding and fertilisation on soil 

CH4 fluxes of peaty gley soils in upland Britain are examined. The dependence of 

CH4 emissions on soil temperature, water content and water table depth is also 

examined here. 

 

Chapter 5: This chapter represents the effect of drainage, mounding and fertilisation 

on N2O emissions and the relationship between fluxes and environmental variables 

are also presented in this chapter.  

 

Chapter 6: This chapter gives a summary of the main conclusions drawn from the 

integration of the entire body of work. The total greenhouse gas budget of the three 

practices in isolation or in combination is also summarised here. 

 

1.5  LITERATURE REVIEW 

 

1.5.1 The importance of soil in C storage  

 

World’s soils hold the second largest C pool in the global C cycle after the deep ocean 

(Schimel 1995). Soils contain 1500 Pg (1 Pg= 1 Gt = 1015 g) of C in the top one metre  

(Adams et al. 1990; Eswaran et al. 1993) and about 900 Pg of C in the depth between 

one and two metres (Batjes 1996). The amount of organic C stored in soils varies with 

ecosystems, land use and management practices (Jobbágy and Jackson 2000). About 

49 % of the world’s organic C stocks are stored in boreal forests, 37% in tropical 

forests and 14% in temperate forests (Post et al. 1982). Northern peatlands are net C 

sinks because their saturated soils and low temperatures limit microbial 

decomposition and lead to accumulation of organic matter (Gorham 1991; Borren et 

al. 2004; Ali et al. 2008). 
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1.5.2 The importance of soil organic matter 

 

Soils play a significant role in the formation, maintenance and turn over of organic 

matter. Soil organic matter determines the biological, physical and chemical 

properties of soils (Merino et al. 2004; Grace et al. 2006). The accumulation and 

storage of organic matter in soils depend on addition of fauna and flora and/or loss of 

C from the soil through heterotrophic and autotrophic respiration and physical losses 

through natural and human disturbances (Baldock and Skjemstad 2000; Johnson et al. 

2006). Maintenance of soil organic matter is particularly important in sustaining the 

productivity of many ecosystems (Henderson 1995; Hirschel et al. 1997; Kirchmann 

et al. 2004). In many ecosystems, the decomposition of organic matter is the only 

available source of plant nutrients (Damman 1978; Van Cleve et al. 1983). The 

amount and quality of organic matter stored in soils depend on vegetation type 

(Wieder and Yavitt 1991; Finer 1996), the soil physical and chemical environment, 

the chemical composition of the litter and its physical accessibility to soil 

microorganisms (Melillo et al. 1982; Taylor et al. 1989; Kemp et al. 1994; Jastrow 

and Miller 1997; Baldock and Skjemstad 2000; Gleixner et al. 2001). 

 

The storage of organic matter in forest ecosystems depends on forest type and site 

fertility. The decomposition rates of organic matter vary with plant type (Collins et al. 

1992; Henriksen and Breland 1999; Kirchmann et al. 2004). For instance, litter from a 

coniferous forest may decompose slowly because of its high lignin and low soluble 

carbohydrate contents (Melillo et al. 1989; Hobbie 1996). In contrast, litter from a 

deciduous forest may decompose rapidly due to its high N and low lignin contents 

(Jensen 1974; Millar 1974; Moore 1984; Hobbie 1996). Therefore, litter in a 

coniferous forest may resist microbial decomposition, thus accumulate and stay longer 

on the forest floor than litter in a deciduous forest. In forest ecosystems, organic 

matter is added to the soil as above-ground and below-ground litter (Tate 1987; 

Cardon 1996; Högberg et al. 2001) and some of it may be lost through microbial 

decomposition (Post et al. 1982; Tate 1987; Gaudinski et al. 2000). Microbial 

decomposition can affect ecosystem C balance by releasing CO2 from soil organic 

matter that ranges in ages from recent (e.g., fine roots turnover) to years and millennia 

(e.g., litter and humified soil C) (Trumbore 2000). 
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1.5.3 Effects of forest management practices on soil C storage  

 

Over the last century land use changes, such as deforestation in the tropics, have 

decreased organic C stocks (Schimel 1995; Houghton 2003). Globally, soils have lost 

between 40 and 90 Pg C through cultivation and other disturbances (Schimel 1995; 

Houghton 1999; Houghton et al. 1999; Lal 1999). The drainage of peatland soils for 

arable agriculture and forestry has also contributed to C losses (Minkkinen and Laine 

1998b). Site preparation practices used for planting tree seedlings and for controlling 

competing vegetation in peatland soils, mostly involves some form of mounding 

(Sutton 1993). Mounds are created by disking or excavation (Trettin et al. 1995). 

Mounds created by disking mix surface soil horizons into the centre of the planting 

bed, while mounds created by excavation do not mix the surface soils (Attiwill et al. 

1985; Sutton 1993). The degree of soil mixing after site preparation for afforestation 

or for replanting clearfelled stands greatly affects organic matter decomposition (Ross 

and Malcolm 1988). An increase in organic matter decomposition is expected in peat 

soils following drainage when soil temperature is increased and aeration is improved 

(Mann 1986; Post and Mann 1990; Hogg et al. 1992). The same is true to some degree 

for mounding which has been reported to improve aeration and to increase soil 

warming (Bridgham et al. 1991; Sutton 1993). 

 

There has been some evidence in recent years that drainage and afforestation can 

decrease soil organic C also in peaty gley soils in the UK (Zerva and Mencuccini 

2005a, Zerva et al. 2005) presumably because of increased oxygen availability that 

increase microbial decomposition (e.g., Brake et al. 1999). For example, Zerva et al. 

(2005) measured 140 ± 15 t C ha−1 in a drained 40-year-old Sitka spruce stand on a 

peaty gley soil and 274 ± 54 t C ha−1 in an unplanted grassland at Harwood Forest. A 

meta-analysis of literature on the effect of land use change on soil organic C stocks 

found that on average soil organic C can decrease by 42% when forests are converted 

to agriculture (Guo and Gifford 2002). Establishing a coniferous forest on land 

previously used for grazing may decrease soil organic C by 12% (Guo and Gifford 

2002). According to Post and Mann (1990) and Davidson and Ackerman (1993), 

converting forests or grasslands to arable agriculture may decrease soil organic C 

stocks by 20 to 50%. Dias−Filho et al. (2001) estimated that converting forests to 
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pasture may decrease above-ground biomass C by 100−200 tonnes ha−1 yr−1. Land use 

changes and other disturbances such as fires may lead to larges losses of organic C 

that have accumulated in soil and vegetation over decades or thousands of years 

(Pypker and Fredeen 2002; Law et al. 2003; Wang et al. 2003; Kolari et al. 2004). 

Forest management practices such as drainage (Martikainen et al. 1995; Nykänen et 

al. 1995; Silvola et al. 1996a) and timber harvesting (Fernandez et al 1993; Ewel et al. 

1987a; Zerva and Mencuccini 2005a) may cause loss of C to the atmosphere as CO2. 

For example, Silvola et al. (1996a) found that lowering the soil water table by 12 to 

40 cm in Finland doubled CO2 emissions. Ewel et al. (1987a) also found that soil 

respiration was higher in a clearfelled stand than uncut forest. Musselman and Fox 

(1991) reported that clearfelling on all soils in the USA decreased soil C pools by 25 

to 50%. According to Johnson and Curtis (2001) and Guo and Gifford (2002) about 6 

to 13% of soil organic C may be lost from clearfelled forest plantations if they are left 

to regenerate naturally or replanted with more productive tree species. Soil water table 

depth greatly affects soil aeration; hence changes in the water table depth following 

clearfelling would have an impact on organic matter decomposition. Larger amounts 

of organic matter have been shown to accumulate in clearfelled stands on wet soils 

than in their counterparts on dry soils (Mattson and Swank 1989; Mroz et al. 1985; 

Johnson and Todd 1998) probably because anaerobic conditions induced by the high 

soil water table limit the rate of organic matter decomposition (Zerva and Mencuccini 

2005a). According to Johnson and Curtis (2001) and Crimczik et al (2005), 

clearfelling has little or no effect on organic C in the top mineral soil if site 

preparation used for replanting is not intensive. According to Cannell et al. (1993) and 

Minkkinen et al. (2001), forestry practices such as drainage and thinning may increase 

soil organic C stock by 6 to 12 kg C m−2 in forest stands in the first rotation (60 to 100 

years) depending on site type and climate. The loss of C due to land use change and 

other disturbances may persist for several years after they occurred (Schulze et al. 

1999; Rannik et al. 2002; Kowalski et al. 2003; Zerva et al. 2005).  

 

1.5.4 Effect of forestry machinery on soil C stocks and effluxes 

 

In comparison with tree planting in areas with well-drained soils, site preparation 

carried out prior to afforestation and replanting clearfelled stands in temperate and 
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boreal forest sites is highly mechanised. Site preparation involves the use of heavy 

equipment which can cause considerable disturbance to soil and lead to loss of 

organic C. Mechanised site preparation may cause soil compaction and alter a number 

of soil properties such as bulk density, air-filled pore space and hydraulic conductivity 

(McNabb et al. 2001; Xu et al. 2002). Losses of soil organic matter and nutrients have 

been reported after site preparation (Farrish et al. 1993; Rab 1994; Turner and 

Lambert 2000). Soil erosion (Bormann and Likens 1979) and leaching (Johansson 

1994) may also lead to loss of organic matter after site preparation. Changes in the 

physical and chemical properties of soils following site preparation in some cases can 

affect site productivity (Brown and Lugo 1990; Jurgensen et al. 1997) and the survival 

and the early growth of planted trees (Smith et al. 1994; Huang et al. 1996; Rab 

1996).  

 

1.5.5 Carbon dioxide emissions from soil 

 

The soil CO2 efflux or soil respiration is a major C flux from terrestrial ecosystems to 

the atmosphere and is an important component of the global C cycle (Schimel 1995; 

Houghton 1995; Raich and Tufekcioglu 2000). According to Raich and Schlesinger 

(1992) and Wagai et al (1998), soil respiration accounts for 25% of the C exchange 

between the biosphere and the atmosphere. Globally, soil respiration varies among 

biomes (Raich and Schlesinger 1992; Rustad et al. 2000), vegetation types (Raich and 

Schlesinger 1992; Wagai et al. 1998; Raich and Tufekcioglu 2000) and seasons 

(Raich and Tufekcioglu 2000; La Scala et al. 2000). Raich and Tufekcioglu (2000) 

found that grassland soils respire more than forest soils. A review of literature by 

Raich and Schlesinger (1992) found that soil respiration was higher in tropical 

lowland forests (1092 g m−2 yr−1) and temperate forests (662 g m−2 yr−1). The review 

also revealed that soil respiration in cultivated land (544 g m−2 yr−1) and in the boreal 

region (322 m−2 yr−1) was intermediate and low in the tundra (60 m−2 yr−1), swamps 

and marshes (200 m−2 yr−1) and scrub desert vegetation. 

 

Globally, soil respiration is estimated to release 68−75 Pg C to the atmosphere 

annually (Raich and Schlesinger 1992; Raich and Potter 1995; Mosier 1998; 

Schlesinger and Andrews 2000). Soil respiration is a composite flux that includes 
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respiration of soil organisms and plant roots and organic matter decomposition, and 

the subsequent release of CO2 at the soil surface (Raich and Nadelhoffer 1989; Malhi 

et al. 1999; Buchmann 2000; Hanson et al. 2000; Savage and Davidson 2001; Law et 

al. 2003; Wan and Luo 2003; Doff et al. 2004; Maljanen et al. 2006; Subke et al. 

2006). According to Hanson et al (2000) and Raich and Tufekcioglu (2000), root 

respiration contributes more CO2 to total soil respiration than all other processes. 

Several studies estimated that root respiration contributes 30−70% to the total soil 

respiration in temperate forests (Boone et al. 1998; Andrews et al. 1999; Buchmann 

2000). Root respiration is estimated to contribute 50−93% to the total soil respiration 

in the Artic tundra (Raich and Tufekcioglu 2000). Dugas et al. (1999) estimated that 

root respiration in grasslands contribute 17−60% to total soil respiration.  

 

1.5.6 Factors affecting soil respiration 

 

Soil respiration is affected by soil temperature (Mallik and Hu 1997; Buchmann 2000; 

Lafleur et al. 2005; Mäkiranta et al. 2007; Minkkinen et al. 2007) and soil moisture 

(Singh and Gupta 1977; Schlentner and Van Cleve 1985, Davidson et al. 1998; 

Buchmann 2000). According to Singh and Gupta (1977) and Raich and Schlesinger 

(1992), the interaction between soil temperature and soil moisture influences soil 

organic matter decomposition and productivity in many ecosystems. Several studies 

reported a positive correlation between soil temperature and soil respiration in various 

ecosystems and soil types (Buchmann 2000; Davidson et al 2000; Fang and Moncrieff 

2001; Wiseman and Seiler 2004). According to Ohashi et al. (1999), Buchmann 

(2000) and Pumpanen et al. (2003), soil temperature is the main driver of soil 

respiration processes in ecosystems when soil moisture and other factors are not 

limiting. In many ecosystems, soil respiration follows seasonal temperature patterns 

(Anderson 1973; Rochette et al. 1991). Trettin et al (1995) found that maximum soil 

respiration in many ecosystems occur in the summer when temperatures are at 

maximum. Akinremi et al (1999) and Parkin and Kaspar (2003) found that soil 

respiration was low in the early morning, rises as the day progresses and reaches 

maximum values in the mid-afternoon. Soil respiration is high in tropical forests 

because soil temperature and moisture are not limiting NPP and organic matter 

decomposition (Rhoades et al. 2000; Raich et al. 2002). 
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Various components of soil respiration (e.g. root respiration, oxidation of plant 

detritus and organic matter heterotrophs) exhibit different sensitivities to temperature 

(Kirschbaum 1995; 2000; Trumbore et al. 1996). It is currently assumed that the 

decomposition of labile carbon is sensitive to variation in temperature, while the 

recalcitrant carbon is insensitive (Liski et al. 1999; Giardina and Ryan 2000; Thornley 

and Cannell 2001; Lenton and Huntingford 2003). This may suggest that soil 

warming will have a greater effect on the rates of CO2 emitted from soils in the boreal 

and tundra region (Niklinska et al. 1999) because these soils have the largest stock of 

labile carbon (Schlesinger and Andrews 2000). The residence times of different soil 

organic fractions are controlled by external factors such climate etc. and its 

decomposability (Vanhala et a. 2008). The temperature sensitive of soil organic 

matter decomposition is commonly modelled as a Q10 function (e.g., Kirschbaum 

1995; Rustad et al. 2000; Fang et al. 2005). The Q10 for a reaction rate is defined as 

the factor by which the rate increases with a 10°C rise in temperature (Parkin and 

Kaspar 2003; Davidson and Janssens 2006). The most commonly reported Q10 values 

range between 2 and 4 (Kirschbaum 1995; Swanson and Flanagan 2001). It has been 

found that the Q10 varies with soil temperature (Howard and Howard 1993; Lloyd and 

Taylor 1994; Kirschbaum et al. 1995, 2000, 2006; Tjoelker et al. 2001; Leifield and 

Fuhrer 2005) and the depth at which temperature is measured (Kirschbaum 1995; 

Swanson and Flanagan 2001). Howard and Howard (1993) subjected different soils to 

a wide range of temperatures and observed Q10 values ranging between 2.01 and 2.83. 

De Boois (1974) found a Q10 value of 3 in the upper litter layer and 2 in the humus 

layer at temperatures ranging from 5−20°C in a forest soil profile. They concluded 

that the response of soil microbes to temperature decreased down the soil profile as 

organic matter was exhausted.  

 

Soil moisture content also influences soil respiration and in general dry soils respire 

less than their wet counterparts (Davidson et al. 2000; Maier and Kress 2000; 

Mielnick and Dugas 2000; Pangle and Seiler 2002; Reichstein et al. 2002). Low soil 

moisture suppresses the soil microbial population (Schimel et al. 1999) and activity 

(Skopp et al. 1990) and therefore limits soil respiration. Similarly, saturated soils may 

limit heterotrophic and autotrophic respiration. Rochette et al. (1991) found that soil 

respiration increased by 90% following rainfall which fell after a long dry period. 
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Davidson et al. (2000) measured soil respiration in a primary forest, a secondary 

forest, an active cattle pasture and a degraded cattle range in eastern Amazonia. They 

found that soil respiration decreased from wet to dry season in all land uses. Besides 

soil temperature and moisture, soil respiration may be affected by other factors such 

as NPP, root biomass, microbial population and activity; root N concentrations, soil 

texture, amount and quality of substrate (Boone et al. 1998; Buchmann 2000; Dilustro 

et al. 2005).  

 

1.5.7 Effect of fertilisation on soil organic C and effluxes 

 

The growth of trees in boreal and temperate forests is limited primarily by N 

(Vitousek and Matson 1985; Munson et al. 1993, Elser et al. 2007; LeBauer and 

Treseder 2008). Nitrogen in boreal and temperate ecosystems is bound in soil organic 

matter (McLaughlin et al. 2000; Saari et al. 2004) and a very small fraction (~1%) is 

available in the form that can be utilised by plants (Saari et al. 2004). For forest 

plantations established on drained organic soils, drainage may increase the rate of 

mineralisation of organic matter (Mann 1986; Davidson and Ackermann 1993) and 

increase nutrient availability (McLaughlin et al. 2000). Fertilisation is a forest 

management practice commonly used to increase the initial growth of forest stands 

established on infertile soils (Allen et al. 1990; Ohtonen et al. 1992). The addition of 

fertilisers to infertile soils, particularly N, may increase C storage in forests by 

increasing litter production and also by reducing the decomposition of organic matter 

(Mäkipää 1995; Hobbie et al. 2002; Franklin et al. 2003; Bowden et al. 2004; De 

Vries et al. 2006; Crane et al. 2007; Magnani et al. 2007; Hyvönen et al. 2008). The 

effect of N fertiliser on organic matter decomposition may be significant, although the 

mechanism behind the reduction is poorly understood (Franklin et al. 2003; Grandy et 

al. 2008; Reay et al. 2008). According to Ågren et al (2001), the decrease in organic 

matter decomposition in forest soils following fertilisation may be caused by increases 

in the microbial production-to-assimilation ratio, a decrease in litter quality, and/or a 

decrease in microbial population. Aber et al (1993) found that the addition of N at 50 

kg N ha−1 yr−1 increased soil organic C storage by 20−40% in boreal and temperate 

forests. 
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Recent studies conducted in boreal and temperate forests of Western Europe and the 

United States found that the net forest C sequestration is driven by N deposition 

(Sitaula and Bakken 1993; Lovett 1994; Högberg, 2007; Magnani et al. 2007; 

Pregitzer et al. 2008). Lovett (1994) estimated that N deposition may add up to 50 kg 

N ha yr−1 to forests in Eastern and North America and Central and Western Europe. 

Townsend et al. (1996) estimated that N deposition may increase organic C storage by 

0.44−0.74 Pg C yr−1 in forest vegetation worldwide. In a recent meta-analysis, Knorr 

et al. (2005) found that litter decomposition was stimulated at sites with low N 

deposition (<5 kg ha−1 yr−1) and litter with low lignin, whereas organic matter 

decomposition was reduced at sites with moderate levels of N deposition (5 to 10 kg 

ha−1 yr−1) or litter which have high lignin levels. It has been suggested that root 

respiration in forests may increase with increasing above-ground biomass production 

following fertilisation (Nadelhoffer et al. 1985; Hanson et al. 2000). Other studies 

reported that root respiration in forest trees may decrease if C allocation to roots 

decreases in response to increased soil fertility caused by fertilisation (Cannell and 

Dewar 1994; Giardina et al. 2003).  

 

1.5.8 Measurement of soil respiration and other trace gases 

 

Because of its large temporal and spatial variability and dependence on many 

environmental variables and other factors, soil respiration is difficult to measure at 

ecosystem level (Norman et al. 1997; Lund et al. 1999). The early studies of soil 

respiration were performed under laboratory (Lundegardh 1927) or under agronomic 

conditions (Kucera and Kirkham, 1971). Efforts have been made in recent years to 

achieve a complete understanding of heterotrophic and autotrophic processes that 

occur in situ. The first soil respiration studies were conducted in forest ecosystems 

(Leith and Ouellettee 1962; Witkamp 1966; Schulze, 1967; Reiners 1968). Several 

laboratory and field studies on soil respiration have been conducted in many 

ecosystems in recent years (e.g., Trumbore et al. 1996; Liski et al. 1999; Kirschbaum 

2000; Luo et al. 2001).  

 

Several methods have been developed for measuring soil respiration in the field. Soil 

respiration can be measured by closed static chambers (Beyer 1991; Grahammer et al. 
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1991), open dynamic chambers (Hanson et al. 1993; Vose et al. 1995) and closed 

dynamic chambers (Rochette et al. 1991; Kim et al. 1992; Norman et al. 1997; Bremer 

et al. 1998). Comparisons between different chamber types have shown significant 

differences in soil respiration rates (Jarvis and Rayment 1997; Norman et al. 1997; 

Fang and Moncrief 1998; Janssens and Ceulemans 1998; Janssens et al. 2000; 

Rayment 2000; Pumpanen et al. 2003; 2004a; Zerva et al. 2005). Each method has its 

advantages and disadvantages (Nakayama 1990; Norman et al. 1992). In the past, 

different chambers were compared against unknown soil respiration rates, until 

Pumpanen et al. (2004a) compared them against known CO2 fluxes ranging from 0.32 

to 10.01 µmol CO2 m−2 s−1. They found that static chambers underestimated CO2 

fluxes by up to 35%. The closed static chamber has been recommended for measuring 

soil respiration and other trace gases (e.g., CH4 and N2O) because of its affordability 

and flexibility (Holland et al. 1999). The closed static chamber differs with an open 

top chamber because it has to be installed permanently in the field or days before 

measurements are conducted to avoid disturbing the soil. An open top chamber can be 

left in one position to monitor soil respiration continuously (Fang and Moncrief 1998) 

while fluxes collected using the closed static chamber requires a gas chromatography 

for analysis. 

 

1.5.9 The role of soil on CH4 emissions 

 

Methane is a GHG. Its concentration in the atmosphere has increased from the pre-

industrial level of 0.75 µmol mol−1 to the current level of 1.75 
µmol mol−1 (Lelieveld 

et al. 1998; Schimel 2000; Smith et al. 2003). The global warming potential (GWP) of 

CH4 for a time horizon of 100 years is 25, which means that 1 kg of atmospheric CH4 

is 25 times as effective in absorbing radiation as 1 kg of atmospheric CO2 (IPCC 

2007). Methane is estimated to contribute 20% to anthropogenic global warming 

(Dalal and Allen 2008). The concentration of CH4 in the atmosphere has been 

increasing at an average global concentration of about 0.5 to 1% annually during the 

past several decades (Steele et al. 1992; IPCC 2007). The increase has been attributed 

to anthropogenic activities such as fossil fuel exploitation, biomass burning, rice 

production, digestive processes from ruminants, sewage treatment plants and landfill 

use (Crutzen 1991; Lelieveld et al. 1998). Globally, total fluxes from human and 
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natural sources are estimated to contribute 600 Tg CH4 yr−1 (Lelieveld et al. 1998: 

Smith 2005; Denman et al. 2007). 

 

Methane emitted from soil to the atmosphere is the balance between production and 

consumption by methanogenic and methanotrophic bacteria, respectively (Sundh et al. 

1994; 1995; Dutaur and Verchot 2007; Chen et al. 2009). The production of CH4 by 

methanogens occurs during the decomposition of organic matter in anaerobic 

environments (Alm et al. 1997; Carrol and Crill 1997; Lloyd et al. 1998; Nykänen et 

al. 1998; Hou et al. 2000; Yavitt and Williams 2000; Le Mer and Roger 2001). 

 

The reaction between CH4 and hydroxyl radicals (OH) in the atmosphere is the major 

sink for atmospheric CH4 (Wang and Ineson 2003). The reaction is estimated to 

remove 490±85 Tg CH4 yr−1 or equivalent to 80 to 90% of CH4 from the atmosphere 

(Crutzen 1991; Lelieveld et al. 1998). Microbial oxidation of atmospheric CH4 in 

well-drained soils is an important biological sink for CH4 in terrestrial ecosystems 

(Adamsen and King 1993; Sundh et al. 1994; Castro et al. 1995; Sitaula et al. 1995; 

Butterbach-Bahl et al. 1998; Roura-Carol and Freeman 1999; Smith et al. 2000). 

According to Singh and Tate (2007), microbial oxidation of CH4 in well-drained soils 

is performed by ubiquitous, aerobic and Gram-negative methanotrophic bacteria. The 

oxidation of CH4 in well-drained soils is estimated to remove 22−100 Tg from the 

atmosphere annually (Smith et al. 2000; Castaldi et al. 2006; Dutaur and Verchot 

2007). Steudler et al (1989) estimated that temperate and tropical forest soils 

contribute to the removal of 37% of atmospheric CH4 consumed in terrestrial 

ecosystems. Several studies estimated that boreal forest soils consume 0.5−9 kg CH4 

ha−1 yr−1 (Ambus and Christensen 1995; Kasimir-Klemedtsson and Klemedtsson 

1997). 

 

1.5.10 Effects of environmental variables on CH4 emissions  

 

Various factors affect the production and consumption of CH4 in soils. They include 

soil water table depth (Granberg et al. 1997; Liblik et al. 1997; Tuittila et al. 2000 

Frenzel and Karofeld 2000; Yang et al. 2006; Ding and Cai 2007), soil temperature 

(Castro et al. 1995; Granberg et al. 1997;  Daulat and Clymo 1998; Saarnio et al. 
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1998; Ding and Cai 2007), soil moisture content (Granberg et al. 1997; Liblik et al. 

1997; Hargreaves and Fowler 1998), amount and quality of organic substrate (Czepiel 

et al. 1995; Bossio et al. 1999; Joabsson et al. 1999; Ström et al. 2003), N content and 

pH (Hütsch et al 1994; Sitaula et al. 1995; MacDonald et al. 1997; Hütsch 1998; 

Singh et al. 1999). Liblik et al. (1997) studied CH4 fluxes in a Canadian peatland and 

found that changes in water table depth explained 62% of the variability observed in 

CH4 fluxes. Several studies demonstrated that CH4 fluxes increase with temperature 

between 2 and 39°C (Dunfield et al. 1993; Kotsyurbenko et al. 1993; Castro et al. 

1995). According to Dise (1992), soil CH4 emitted from terrestrial wetlands during 

the winter can contribute 4 to 21% of the annual emissions. Hütsch et al (1994) 

studied CH4 fluxes in grassland soils. They found that soils with pH varying between 

4.8 and 5.1 were a source of atmospheric CH4, while oxidation occurred in similar 

soils limed to increase pH to 6.8. Hütsch (1998) found that a silty loam soil cultivated 

to lower soil pH from 8 to 7.1 emitted more CH4 than before liming. Microbial 

population size and substrate availability also affect CH4 emissions (Yavitt et al. 

1987). 

 

1.5.11 Effects of land use change and management on CH4 fluxes 

 

In general, land use changes such as converting forests and grasslands to arable land 

decrease CH4 consumption (Mosier et al. 1991; Dobbie et al. 1996; Smith et al. 2000; 

Ball et al. 2002; Maljanen et al. 2003a; Merino et al. 2004; Tate et al. 2007). For 

example, Dobbie and Smith (1996) measured soil CH4 fluxes in Scotland and found 

that a mixed deciduous forest soil consumed more CH4 (2.19 to 2.97 mg m−2 d−1) than 

the adjacent cultivated land used for arable agriculture (0.82 mg CH4 m
−2 d−1). The 

decrease in CH4 consumption after land use change results from the disturbance effect 

on the population and activity of CH4 oxidising soil microorganisms (Knief et al. 

2003; Seghers et al. 2003; Tate et al. 2007). Soils that have been out of cultivation for 

many years have been shown to consume CH4 ten times faster than recently cultivated 

soils (Willison et al. 1995).  

 

Drainage can decrease CH4 emissions in peatlands due to decreased production and 

increased CH4 oxidation caused by improved aeration on the peat surface (Roulet et 
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al. 1993; Glen et al. 1993; Martikainen et al. 1995; Nykänen et al. 1995). However, 

draining nutrient-rich organic soils may decrease CH4 oxidation because the enhanced 

decomposition of organic matter increases ammonium (NH4
+) availability (Bradford 

et al. 2000; Castro et al. 2000), mimicking the effects of fertilisation (see next 

section). 

 

1.5.12 Effect of fertilisation on CH4 fluxes  

 

Studies conducted under field and laboratory conditions have shown that N 

fertilisation decreases soil CH4 oxidation in many ecosystems (Steudler et al. 1989; 

Mosier et al. 1991, 1996; Adamsen and King 1993; Castro et al. 1995; Boeckx and 

Cleemput 1996; Hütsch 2001). The most reported effect of N is that of NH4
+, which 

decreased CH4 consumption by up to 70% in several soils (Adamsen and King 1993; 

Castro et al. 1994; Crill et al. 1994; Gulledge et al. 1997; Powlson et al. 1997; Saari et 

al. 1997). The decrease in soil CH4 oxidation in N fertilised soils may be caused by 

the effect of N on soil CH4-consuming microbes and on the biochemical processes 

involved CH4 oxidation in soil. According to Powlson et al. (1997), soils that had 

received ammonium nitrate at 144 kg ha−1 y−1 for over 150 years decreased CH4 

oxidation by 50% compared with unfertilised soils. Castro et al. (1994) found that 

CH4 oxidation in a 26 year old slash pine (Pinus elliottii var. elliottii Englem.) site in 

Florida was 5−20 times lower in the fertilised plots than their unfertilised 

counterparts. 

 

1.5.13 The role of soil in N2O flux 

 

Nitrous oxide is a powerful GHG in the troposphere which contributes to ozone 

depletion in the stratosphere (Cicerone 1987). Since the beginning of the industrial 

revolution the atmospheric concentration of N2O has increased from 0.275 µmol 

mol−1to the current level of 0.320 µmol mol−1 (Smith and Conen 2004) and has been 

increasing at an average global concentration of 0.2−0.30% per year (Flessa et al. 

1995; Conrad 1996; Mosier et al. 1998a). A kilogram of atmospheric N2O is 298 

times as effective in absorbing radiation as 1 kg of atmospheric CO2 over a time 
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horizon of 100 years (IPCC 2007). The average atmospheric lifetime of N2O is 

estimated at 150 years (IAEA 1992).  

 

According to Kroeze et al. (1999), global N2O emissions were 17.7 Tg N in 1994, of 

which 8.1 Tg were contributed by anthropogenic activities. Globally, soils are the 

most important source of atmospheric N2O (Williams et al. 1992; Bouwman et al. 

1993). Soil N2O oxide is produced by microbial processes of denitrification and 

nitrification (Regina et al. 1996; Bremner 1997; Wrage et al. 2001; Machefert et al. 

2002; Mosier et al. 2004; Koponen et al. 2006). The two processes are controlled by 

the availability of oxygen, which depends on soil water content (Robertson and Tiedje 

1987). Denitrification is the reduction of NO3
− to N2 (Groffman et al. 1999; Smith et 

al. 2003). Denitrification is an anoxic process that is important in N2O production and 

emission in saturated organic soils (Smith et al. 1998; Dobbie et al. 1999; Ruser et al. 

2001). Nitrification is the oxidation of NH4
+ or ammonia (NH3) to nitrate via nitrite 

(Bollmann and Conrad 1998; McLain and Martens 2005) and is an oxic process which 

is important in N2O fluxes in aerobic soils (Wrange et al. 2001).  

 

Agriculture is estimated to contribute 80% to the global anthropogenic N2O 

emissions, more than half of which is released directly from cultivated and fertilised 

agricultural soils (Mosier et al. 1998b; Kroeze et al. 1999; Gödde and Conrad 2000). 

Crutzen et al. (2008) estimated that agriculture contribute 4.3 to 5.8 Tg N2O−N yr−1 to 

the N2O growth rate. Nitrous oxide is also emitted from agricultural soils indirectly 

through drainage streams, ground water, rivers and estuaries (Groffman et al. 1998; 

McMahon and Dennehy 1999; Reay et al. 2004). The increase in anthropogenic N2O 

emissions is primarily caused by increased N input into agricultural soils (Mosier et 

al. 1998b). Recent studies have suggested that the increasing use of biofuels to reduce 

dependence on imported fuels to achieve “carbon neutrality” will increase 

atmospheric N2O further because of emissions associated with N fertilisation (Crutzen 

et al. 2008). Other sources of N2O are oceans, biomass burning and emissions from 

industrial processes and automobiles (Bange 2000).  
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1.5.14 Effect of environmental factors on soil N2O flux 

 

In soils, the production of N2O is regulated by the interaction between soil properties, 

climatic factors and management practices (Granli and Bockman 1994) that affect soil 

microbial processes (denitrification and nitrification). Factors that affect N2O 

production and emission from soils include soil properties (Velthof and Oenema 

1995; Pihlatie et al. 2004; Syväsalo et al. 2004) soil moisture content (Goodroad and 

Keeney 1984; Pihlatie et al. 2004; Del Prado et al. 2006), water filled pore space 

(WFPS) (Dobbie et al. 1999; Dobbie and Smith 2001, 2003, 2006), soil temperature 

(Skiba et al. 1998; Smith et al. 1998; Koponen et al. 2006), availability of degradable 

organic substrate (Ineson et al. 1998), available N (NH4
+ and NO3

−)(Velthof et al. 

1997), soil pH (Daum and Schenk 1998; Mogge et al. 1999) and plant species 

(Hénault et al. 1998; Ineson et al. 1998; Syväsalo et al. 2004; Niklaus et al. 2006).  

 

Soil temperature controls many biological processes in soils and in case of N2O 

production; it may affect microbial processes by stimulating N2O-producing soil 

microorganisms. According to Skiba et al. (1998) and Smith et al. (1998), soil 

temperature exerts more control over soil N2O production when other factors such as 

soil moisture content and substrate availability are not limiting. Other studies have 

demonstrated that the rates of denitrification and nitrification increase with increasing 

temperature (Goodroad and Keeney 1984; Weir and Gilliam 1986; Smolander et al. 

1998). Goodroad and Keeney (1984) incubated soils in a laboratory and found that 

N2O production increased when soil moisture was increased from 0.1 to 0.3 cm3 cm−3. 

In contrast, Bowden et al. (1990) and Zerva and Mencuccini (2005a) found no 

relationship between soil moisture content and N2O flux. Several studies 

demonstrated that nitrification is an important process in N2O production at WFPS 

from 50 to 60% (Skiba and Ball 2002; Dobbie et al. 1999). According to Dobbie et al. 

(1999), denitrification starts just above 60% WFPS and reaches optimum rates 

between 80 and 85% WFPS. The WFPS depends on the balance between the amount 

of water entering the soil from precipitation or irrigation and the combined effect of 

evapotranspiration and drainage (Dobbie and Smith 2003, 2006). 
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Plants may affect N2O production by modifying soil physical conditions and inputs of 

degradable organic substrate and thus influence soil microbial processes (Ineson et al. 

1998). Klemedtsson et al. (1987) found that plant root growth increases the turnover 

of root material and thus increased denitrification by providing a substrate to 

denitrifying microorganisms.  

 

1.5.15  Effects of fertilisation on soil N2O flux 

 

Nitrous oxide emissions from soils have been shown to increase after application of N 

fertiliser to agriculture and forest soils (Klemedtsson et al. 1997; Flessa et al. 1998; 

Kaiser et al. 1998; Dobbie et al. 1999; Kroeze et al. 1999; Baggs et al. 2000; 2003; 

Weitz et al. 2001; Erickson et al. 2001; Ruser et al. 2006). Other studies found that 

atmospheric N deposition also increases N2O emissions (Brumme and Beese 1992; 

Butterbach-Bahl et al 1998; Gundersen et al. 1998; Skiba and Smith 2000). The 

addition of N fertiliser to soil provides a substrate for N2O production by 

denitrification and nitrification (Hénault et al. 1998; Dobbie et al. 1999). Butterbach-

Bahl et al. (1998) found that N2O emissions from forests that have received large 

quantities of N through atmospheric deposition in the temperate zone of Europe were 

2 to 5 times higher than those which have received low deposition. Brumme and 

Beese (1992) found that N2O emissions from a beech forest that have received N at a 

rate of 35 kg N ha−1 yr−1 through atmospheric deposition in Germany were 5.6 kg 

N2O-N ha−1 yr−1. Other studies (e.g., Minami and Fukushi 1983) have demonstrated 

that non-N fertilisers such as calcium carbonate and phosphorus may increase N2O 

production indirectly by increasing soil pH.  

 

1.5.16 Effects of forest management practices on soil N2O flux  

 

Saturated soils of the boreal and temperate region are sinks or insignificant sources for 

atmospheric N2O (Martikainen et al. 1993a; Regina et al. 1996; Johansson et al 2003) 

because water logging and low temperatures limit soil microbial processes. Field and 

laboratory studies have shown that drainage increases N2O emissions of fertile peat 

soils (Kliewer and Gilliam 1995; Regina et al. 1998; Liikainen et al. 2002) by 

increasing the rate of mineralisation of organic matter (Updegraff et al. 1995) which 
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increases N substrate for N2O formation and emission. However, the effect of 

drainage on N2O production and emission is more significant in nutrient-rich organic 

soils than in similar soils that are infertile. 

 

Soil cultivation, including mounding, may increase the formation and emission of 

N2O because of the fertilisation affect. Mounding generally mixes or buries the litter 

and the organic layer beneath the mineral layers (Saari et al. 2004). This may increase 

organic matter decomposition rates (Mann 1986, Davidson and Ackerman 1993) and 

increase N availability (Vitousek and Matson 1985; Fox et al. 1986; Vitousek et al. 

1992) which may enhance the formation and emission of N2O in fertile soils. 

 

1.5.17 The study site 

 

The field investigation was carried out in an experiment established on unimproved 

grassland located between two second rotation Sitka spruce stands at Harwood Forest. 

Harwood is located in NE England (55° 10’ N, 2° 3’W), 30 km inland of the North 

Sea Coast. Harwood Forest was a site for the European CARBO-AGE project 

(Kowalski et al. 2004; Zerva et al. 2005; Zerva and Mencuccini 2005a and b) and is 

currently one of the core sites of the Centre for Terrestrial Carbon Dynamics 

(http://ctcd.group.shef.ac.uk/ctcd.html). The elevation varies from 200 to 400 m above 

sea level (Zerva and Mencuccini 2005a; Ball et al. 2007). The mean annual 

temperature and precipitation in the area are 7.6°C and 950 mm respectively (Conen 

et al 2005). The dominant soil type is a seasonally waterlogged peaty gley with a 

black-coloured organic-rich layer of depth varying from 15 to 40 cm (Zerva and 

Mencuccini 2005a; Zerva et al. 2005; Ball et al. 2007).  

 

The forest covers 4000 ha and is dominated by Sitka spruce stands established on 

moorland grassland which had been used for grazing domestic livestock. The forest 

was originally established in the 1930s and further planting took place between the 

1950s and the 1980s and most stands are now in their second rotation. Site preparation 

used for planting varies, with old stands planted on linear ridges made with single 

furrow ploughs and sites often have open ditches spaced at 20−30 m. Mounding has 

replaced ploughing as a method of soil cultivation prior to planting in the last three 
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decades (Ball et al. 2007; Minkkinen et al. 2008). Mounding consists of mechanically 

excavating the soil to a depth of 30−40 cm and heaping it upside down next to the pit. 

The mounds are commonly spaced at 2 × 2 m intervals (i.e., 2500 pits/ha) to plant 

conifers throughout upland Britain. The study site is dominated by Calluna vulgaris, 

Festuca ovina, Eriophorum vaginatum and Deschampsia flexuosa and had been used 

for grazing domestic stock up to the year before the experiment started. 
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CHAPTER 2 

 

EFFECT OF SITE PREPARATION FOR AFFORESTATION ON 

SOIL PROPORTIES AND VARIOUS POOLS OF CARBON AND 

NITROGEN  
 

2.1 INTRODUCTION 

 

The world’s soils store more carbon than is present in the biomass and in the 

atmosphere (Jobbágy and Jackson 2000). They also contain more than 90% of the 

nitrogen of the terrestrial biosphere (Schlesinger 1986) and play a major role in the 

global carbon and nitrogen cycles (Neil et al. 1997). Terrestrial carbon stocks are 

sensitive to changes in land management (i.e., conversion of forests and grassland to 

cropland), climate and soil disturbances (Johnson 1992; Johnson et al. 2006). Forest 

plantations in the UK are often established on former grasslands on peaty gley soils 

that require drainage and mounding to lower the water table and prepare planting 

spots. These forest management practices may change physical, chemical and 

biological properties of soils (Jurgensen et al. 1997; Merino et al. 1998) and affect the 

amount and quality as well as the distribution of organic matter (Paul et al. 2002). It 

has been demonstrated that forest management practices used to prepare forest sites 

for afforestation and replanting clearfelled plantations decrease carbon and nitrogen at 

the soil surface (Tuttle et al. 1985; Tiessen et al. 1994; Munson et al. 1993; Zerva et 

al. 2005) as result of changes in soil temperature and soil moisture (Armentano and 

Menges 1986; Trettin et al. 1995) which increases the rate of organic matter 

mineralisation (Vitousek and Matson 1985; Fox et al. 1986; Smethurst and Nambiar 

1990; Vitousek et al. 1992).  

 

In some sites, disturbances caused by site preparation carried out prior to afforestation 

and replanting may affect the survival and early growth of trees as well as the 

productivity of subsequent plantations (Smith et al. 1994; Henderson 1995, Rab 

1996). The storage of soil organic matter has a significant influence on soil properties 

such as bulk density, water holding capacity and cation exchange, which are 

important for the stability of ecosystems. The effects of site preparation for 

afforestation and replanting on soil carbon and nitrogen are important not only 
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because they (C and N) are often the major factors determining soil quality but also 

because soils act as a source or sink of carbon on a global scale (Johnson and Curtis 

2001). Disturbances caused by forest management practices (e.g., site preparation and 

timber harvesting) may turn soils to sources of carbon to the atmosphere (Detwiler 

and Hall 1988). Site preparation has been an integral part of forest management in 

Britain for many years (Avery 1990; Cannell et al. 1993). The main site preparation 

for afforestation and replanting clearfelled plantations in upland Britain involves 

mechanically lowering the soil water table depth by open drainage ditches. Ploughing 

has also played a crucial role in the expansion of forest plantations in the UK 

(Patterson and Masson 1999), although in more recent years it was replaced by 

mounding (Ball et al. 2007; Minkkinen et al. 2008). Although changes in soil 

properties and carbon stocks after afforestation have been quantified in different parts 

of the world (e.g. Paul et al. 2002; Zinn et al. 2002; Conen et al. 2005; Zerva and 

Mencuccini 2005b; Zerva et al. 2005; Wang et al. 2006), information on the effect of 

site preparation carried out prior to afforestation on soil properties and various pools 

of carbon and nitrogen in peaty gley soils is lacking.  

 

The aim of this study was to examine changes in soil properties and various pools of 

carbon and nitrogen on a peaty gley soil following site preparation before trees are 

planted. We hypothesised that site preparation would change the soil bulk density and 

pH and increase C and N losses. 

 

2.2 MATERIALS AND METHODS 

 

2.2.1  Site description  

 

A full description of the study site is outlined in Chapter 1. Briefly, the experiment 

was conducted at Harwood Forest (Northumberland, NE England). The experiment 

was established on an unplanted site located between two second rotation Sitka spruce 

stands (Fig. 2.1). 
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Figure 2.1. The experimental site at Harwood Forest before site preparation. 

 

2.2.2 Experimental design and establishment 

 

The experiment has a full factorial split-plot design with six plots measuring 30 × 8 m 

established in May 2006 (Fig. 2.2). Three plots were selected at random and were 

drained by cutting open drainage ditches placed 1.5 m from the plot edges and 

excavated to a depth of 65 to 70 cm (Fig. 2.3). Drained and undrained plots were 

isolated by 10 m wide buffer strips. Within each plot, four subplots measuring 8 × 6 m 

were established and two of them were chosen at random to be mounded. Spot 

mounds were spaced at 2 × 2 m (Fig. 2.4). Subplots were isolated by 2 m wide buffer 

strips. Spot mounds were made by turning the soil upside down adjacent to the dug pit 

(depth 30−40 cm, width 40 cm), thus burying the litter layer and organic horizons of 

the original soil beneath the mineral layer of mounds. Mounds were about 40 cm wide 

and 15 cm high. One random mounded, and one random unmounded subplot in each 

plot were given a compound fertiliser supplying 81 kg N ha−1, 72 kg P ha−1 and 35 kg 

K ha−1 as recommended by Taylor (1991). Each treatment was replicated three times. 

The fertiliser was applied once on 11 June 2006. Hence, the main plots allowed 
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testing for drainage effects, whereas the subplots allowed testing for fertilisation and 

mounding, in isolation or combined.  

10m

T2 PLOT 1 T1

T1 Undrained plot 30 m T2

T4 T3

T3 T4

7m

3m

T2 PLOT 2 T1= MOUNDED AND FERTILISED

T3 30m T2= MOUNDED AND UNFERTILISED

T1 Drained plot T3= UNMOUNDED AND FERTILISED

T4 T4= UNMOUNDING AND  UNFERTILISED

3m

T3 PLOT 3

T2 Main drain to be 1 m deep

T1 Drained plot 30m Distance between drain and plot 1.5 m

T4

3m Main ditch stop 3 m 

7m

T2 PLOT 4

T3 Mound depth 40cm and soil heaped

T1 Undrained plot 30m outside mound

T4

3m

T1 Undrained plot PLOT 5

T2

T4 30m

T3

7m

3m

T2 Drained plot PLOT 6

T3 Main ditch ends 3 m after the plot 

T4 30m

T1

3m

 

Figure 2.2. The layout of the experiment and Harwood Forest (the figure is not drawn 
to scale). 
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Figure 2.3. Open drainage ditches at the experimental site   
 

 
 

Figure 2.4. Spot mounds were spaced at 2 × 2 m at the experimental site. 
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2.2.3 Soil sampling 

 

Soil samples were collected in May 2006 (pre-samples) November 2006, February 

and August 2007, February and June 2008. All samples were collected to a depth of 

20 cm, except in August 2007 and June 2008. Soil samples for August 2007 and June 

2008 were taken at 0−10, 10−20 and 20−30 depth. In all sampling occasions, soils 

were collected from four randomly selected points in each subplot using a square (5 × 

5 cm) corer. Soils were bulked by subplot and layer to make composite samples and 

bagged in black polythene bags for transportation to the laboratory in a cold box. Soil 

samples were kept in a cold room (3˚C) overnight awaiting preparation and analysis 

the following day. 

 

2.2.4 Measurement for the determination of total C and N 

 

Soil samples were passed through a 4 mm sieve and then oven dried at 60°C to 

constant weight. After drying, soil samples were passed through a 2 mm sieve using 

hand applied pressure before grinding in a Ball Mill (Glen, Creston, Sheffield, UK) to 

pass through a 0.5 mm sieve. Samples were then kept in high scintillation glass vials 

with linerless screw caps awaiting analysis. The samples were tested for water content 

before analysis. Sub-samples of about 5 grams were oven dried at 105°C for three 

hours (Allen 1989) for % soil moisture estimation. The soil moisture content was 

found to be between 1−3%, which is acceptable for the estimation of carbon. 

 

Soil sub-samples of 4 mg for soil samples collected in the 0−10 and the 10−20 cm 

depth and 10 mg from samples collected in the 20−30 cm depth were weighed on a 

precision microbalance down to 3 decimals and a put in aluminium tin capsules. The 

capsules were moulded into small pallets and placed into an autosampler for loading 

into a Carlo Erba, NA 2500 C/N analyser for direct analysis by combustion. A 

combustion run contained 50 samples of soil and 7 samples of standards of known 

concentration. The C/N analyser gave the carbon and nitrogen totals in percentage. 

The mass of C and N in the core sample were calculated from: 
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Mc =Md × C or N (%)/100 

where: Mc is the total mass of C or N in the sample, Md is the dry mass of the sample, 

and C or N (%) is the percentage obtained from the C/N analyser. The carbon and 

nitrogen concentration in soil samples was expressed in g kg−1. The C/N analysers are 

considered to be more accurate and reliable that the loss on ignition method (LOI) 

(Sollins et al. 1999). .  

 

2.2.5 Soil bulk density 

 

The soil bulk density was determined for soil samples collected in May 2006 (pre-

samples) and in August 2007 and June 2008. Pre-samples were collected to a depth of 

20 cm without separating soil layers. The bulk density for samples collected in August 

2007 and June 2008 was determined from soil cores collected at depths of 0−10, 

10−20 and 20−30 cm depths. Soil samples were oven dried to constant weight at 

105°C. Bulk density (Pb) was calculated by dividing the weight of dried samples by 

their fresh volume (Elliot et al. 1999) 

Pb=M/V 

where, Pb is the bulk density (g cm−3), M is the dry mass of a given soil sample (g) 

and V is its fresh volume (cm3). 

 

2.2.6 Soil pH 

 

Soil pH was measured from a soil-water suspension. About 25 ml of distilled-

deionised water were added to 10 g of field moist soil (Wall and Hytönen 2005).  The 

mixture was shaken in an orbital shaker for 10 minutes and the slurry was allowed to 

settle for 30 minutes before soil pH was measured with a glass electrode and a pH 

meter calibrated using two buffer solutions with values of 4 and 7. 

 

2.2.7 Soil microbial biomass carbon 

 

Soil microbial biomass carbon was determined on soil samples collected at a depth of 

0 to 20 cm in November 2006 and February and August 2007 using the chloroform 

fumigation extraction method (e.g., Brookes et al. 1985; Vance et al. 1987). Twenty 
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grams of soil were fumigated with ethanol-free chloroform for 24 hours in a vacuum 

oven (7627F Gallenkamp, Loughborough, England) containing a vial with soda lime. 

After fumigation, fumigated and control (non-fumigated) samples were extracted with 

80 ml of 0.5 M K2SO4 on a reciprocal shaker (5B-6736B, Gallenkamp, 

Loughborough, England) set at 100 revolutions per minute (rpm) for 1 hour. After 

extraction, the solutions were transferred into 50 ml centrifuge tubes and centrifuged 

at 4000 rpm for about 10 minutes. The supernatant was then transferred into 20 ml 

plastic vials and filtered through 0.45 µm Millipore filters. Inorganic carbon was 

removed from the supernatant by acidifying to pH 2 using a concentrated phosphoric 

acid and purging with N2 to degas samples. Organic carbon in the extracts was 

determined using an automated total organic carbon analyser (DC−80, Sartec Ltd., 

Kent, England) with a UV-persulphate oxidation and IR detector (Wu et al. 1990). 

Microbial biomass carbon was calculated as follows: 

MBC = EC/KEC 

where, EC is the (organic carbon extracted from fumigated soils)−(organic carbon 

extracted from non-fumigated soils) and KEC is the extractable component of 

microbial biomass carbon which is estimated to be 0.45 (Wu et al. 1990; Joergensen, 

1996). 

 

2.2.8 Inorganic N  

 

Inorganic N (NH4
+ and NO3

−) was measured in samples collected in August 2007 and 

February 2008. Soil samples for the determination of available N were collected to a 

depth of 20 cm. Samples were prepared by sieving fresh soil samples through a 2.0 

mm aperture sieve (Endecott Ltd., London). About 5 g of sieved fresh soil were 

weighed into glass bottles and 100 ml of 1 M KCl was added in each sample and 

sealed. The solution was thoroughly mixed on an orbital shaker (Gallenkamp, 

Loughborough, UK) set at 150 rpm for 1 hour. After shaking the mixed solution was 

filtered through a filter paper, Ashless Paper 2, (Whatman International Ltd, 

Maidstone, England). The extracts were kept in tightly capped vials at 3°C until 

analysed for NH4
+ and NO3

− by a continuous flow Series 3 Auto analyser system 

(Brann and Luebbe). 
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2.2.9 Above-ground plant biomass 

 

Aboveground vegetation biomass was measured once in June 2007 from two 1 x 1 m 

quadrats which were established at random in each subplot. All plants within the 

quadrat were clipped at ground level using pruning shears, bagged in black polythene 

bags and transported to the laboratory. In the laboratory, samples were transferred into 

paper bags and oven dried to constant weight at 80°C. The biomass was expressed in 

tonnes per hectares of dry mass (t ha−1 DM). 

 

2.2.10 Statistical analysis 

 

All data were checked for normality and log-transformed when required. Analyses 

were carried out for each sampling date. The general linear model (GLM) was used 

for analysis of variance. The general linear model tested for effects of three main 

factors (drainage, mounding and fertilisation) entered as fixed factors and plot entered 

as random factor nested within drainage. The initial GLM included all possible second 

and third-order interactions. If interactions were not found to be significant, they were 

excluded and the model was run again without them to confirm the significance of the 

main factors. In case of significant interactions, the dataset was split and separate 

analyses were run for each combination. All analyses were run in Minitab 15 using 

the GLM procedure and the significance level was set at 0.05. Tukey’s pairwise 

comparison test was applied to determine significant differences between treated and 

untreated plots/subplots. 

 

2.3 RESULTS 

 

2.3.1 Carbon and nitrogen concentrations 

 

Mean soil organic carbon and total nitrogen concentrations are given in Table 2.1. The 

carbon concentration varied with depth from both sampling occasions (P=0.0001, 

Table 2.1), with the 20−30 cm (mineral layer) depth having the lowest soil organic 

carbon. Drainage decreased the soil organic carbon concentration in the 0−10 cm 

layer (P=0.03) at the end of the first year. Fertilisation also increased the soil organic 
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carbon in the 0−10 cm layer (P=0.02) at the end of the first year but not in the 10−20 

and the 20−30 cm soil layers (all P=0.5). Mounding had no effect on the soil organic 

carbon concentration in the 0−10, 10−20 and the 20−30 cm soil layers at the end of 

year 1 (all P=0.7). Drainage significantly decreased the soil organic carbon 

concentration at the end of study (June 2008) in the 0−10 cm layer (P=0.04) but not in 

the 10−20 cm (P=0.5) and the 20−30 cm (P=0.7) soil layers. In none of the measured 

layers was the soil organic carbon concentration affected by mounding or fertilisation 

at the end of study (Table 2.1).  

 

The total N concentration in this site varied with soil depth (P=0.0001, Table 2.1) and 

was higher in the 0−10 cm and the 10−20 cm layer than in the 20−30 cm layer. The 

total N concentration was increased by drainage in the 0−10 cm layer in the first year 

of study (P=0.05) but not in the 10−20 cm (P=0.9) and the 20−30 cm (P=1.0) soil 

layers. The concentration of the total N was not affected by mounding or fertilisation 

in the first year of study (Table 2.1). In the second year of study, drainage 

significantly decreased the total N concentration in the 0−10 cm layer (P=0.04) but 

not in the 10−20 (P=0.5) and 20−30 cm (P=0.7) soil layers. Fertilisation or mounding 

did not affect the concentration of total N in either soil layer (Table 2.1). 

 

The C/N ratio varied with soil depth (P=0.0001). The C/N ratio in the 0−10 cm soil 

layer was significantly increased by fertilisation in the first year of study (P=0.01) but 

not in the 10−20 (P=0.6) and the 20−30 cm (P=0.3) soil layer. Drainage and 

mounding did not affect the C/N ratio in the first year of study (Table 2.1). In the 

second year of study, the C/N ratio was not affected by drainage, mounding or 

fertilisation in either soil depth (Table 2.1). 

 



 
34

 

T
ab

le
 2

.1
. E

ff
ec

ts
 o

f 
dr

ai
na

ge
, m

ou
nd

in
g 

an
d 

fe
rt

ili
sa

tio
n 

on
 c

ar
bo

n 
an

d 
ni

tr
og

en
 c

on
ce

nt
ra

tio
ns

, C
/N

 r
at

io
. N

um
be

r 
(n

) 
of

 s
am

pl
e 

is
 1

2.
  

 
T

re
at

m
en

t  
 

 
T

re
at

m
en

t 
 

 
T

re
at

m
en

t 
 

 
Pa

ra
m

et
er

/d
ep

th
 

 
 

 
 

 
 

 
 

 
A

ug
us

t 2
00

7 
D

ra
in

ed
 

U
nd

ra
in

ed
 

P−
va

lu
e 

M
ou

nd
ed

 
U

nm
ou

nd
ed

 
P−

va
lu

e 
Fe

rt
ili

se
d 

U
nf

er
til

is
ed

 
P−

va
lu

e 
T

ot
al

 C
 (

g 
kg

−
1 ) 

 
 

 
 

 
 

 
 

 
0−

10
 

4
1

9
.2

±
1

3
.3

7
a

 
4

5
8

.1
9

±
5
.6

4
a

 
0

.0
3

 
43

6.
77

±1
3.

66
a 

44
0.

69
±9

.6
0a

 
0.

7 
4

5
1

.1
6

±
7
.4

8
a

 
4

2
6

.3
0

±
1
3

.9
8

a
 

0
.0

2
 

10
−

20
 

44
8.

28
±2

3.
87

a 
45

2.
01

±1
5.

53
a 

0.
7 

44
7.

61
±2

6.
27

a 
45

2.
69

±1
0.

98
a 

0.
7 

45
9.

87
±1

3.
72

a 
44

0.
43

±2
4.

62
a 

0.
5 

20
−

30
 

37
.5

4±
4.

38
a 

37
.2

2±
4.

57
a 

1.
0 

39
.6

5±
4.

94
a 

35
.1

1±
3.

83
a 

0.
7 

36
.7

5±
3.

57
a 

38
.0

1±
5.

22
a 

0.
5 

T
ot

al
 N

(g
 k

g−
1 ) 

 
 

 
 

 
 

 
 

 
0−

10
 

1
8

.3
1
±

0
.7

9
a

 
2

0
.8

0
±

0
.3

2
a

 
0

.0
5

 
19

.5
1±

0.
71

a 
19

.6
0±

0.
71

a 
0.

9 
19

.4
0±

0.
52

a 
19

.7
1±

0.
86

a 
0.

9 
10

−
20

 
15

.3
2±

0.
74

a 
15

.3
5±

0.
72

a 
0.

9 
15

.6
8±

0.
90

a 
14

.9
9±

0.
49

a 
0.

7 
15

.8
5±

0.
64

a 
14

.8
2±

0.
78

a 
0.

4 
20

−
30

 
1.

26
±0

.1
5a

 
1.

23
±0

.1
4a

 
1.

0 
1.

37
±0

.1
7a

 
1.

12
±0

.1
0a

 
0.

7 
1.

20
±0

.1
1a

 
1.

30
±0

.1
7a

 
0.

9 
C

/N
 r

at
io

 
 

 
 

 
 

 
 

 
 

0−
10

 
23

.0
9±

0.
60

a 
22

.0
9±

0.
47

a 
0.

5 
22

.5
0±

0.
57

a 
22

.6
8±

0.
55

a 
0.

7 
2

3
.3

7
±

0
.4

9
a

 
2

1
.8

1
±

0
.5

3
b

 
0
.0

0
5
 

10
−

20
 

29
.1

6±
0.

76
a 

29
.6

8±
0.

56
a 

0.
7 

2
8

.5
2
±

0
.7

0
a

 
3

0
.3

2
±

0
.5

1
b

 
0

.0
4

 
29

.1
9±

0.
58

a 
29

.6
5±

0.
74

a 
0.

6 
20

−
30

 
30

.1
3±

1.
20

a 
29

.9
7±

1.
10

a 
1.

0 
29

.0
4±

1.
16

a 
31

.0
6±

1.
06

a 
0.

07
 

30
.7

3±
1.

31
a 

29
.3

7±
0.

92
a 

0.
3 

Ju
ne

 2
00

8 
T

re
at

m
en

t 
 

 
T

re
at

m
en

t 
 

 
T

re
at

m
en

t 
 

 
T

ot
al

 C
 (

g 
kg

−
1 ) 

D
ra

in
ed

 
U

nd
ra

in
ed

 
P−

va
lu

e 
M

ou
nd

ed
 

U
nm

ou
nd

ed
 

P−
va

lu
e 

Fe
rt

ili
se

d 
U

nf
er

til
is

ed
 

P−
va

lu
e 

0−
10

 
4

2
9

.4
3

±
8
.0

6
a

 
4

6
0

.9
2

±
5
.0

2
b

 
0

.0
4

 
44

6.
17

±8
.1

3a
 

44
4.

18
±8

.3
0a

 
0.

8 
44

9.
04

±7
.8

6a
 

44
1.

30
±8

.4
1a

 
0.

4 
10

−
20

 
44

4.
17

±1
6.

54
a 

45
1.

98
±1

2.
23

a 
0.

5 
45

2.
23

±1
7.

72
a 

44
3.

92
±1

0.
43

a 
 

0.
8 

44
7.

20
±1

5.
03

a 
44

8.
95

±1
4.

14
a 

0.
9 

20
−

30
 

35
.8

1±
3.

82
a 

41
.8

5±
7.

11
a 

0.
7 

39
.9

0±
4.

43
a 

37
.7

6±
6.

86
a 

0.
5 

35
.8

9±
3.

26
a 

41
.7

7±
7.

39
a 

0.
7 

T
ot

al
 N

 (
g 

kg
−

1 ))
 

 
 

 
 

 
 

 
 

 
0−

10
 

1
7

.1
2
±

0
.3

3
a

 
1

8
.4

1
±

0
.2

1
b

 
0

.0
4

 
17

.8
0±

0.
33

a 
17

.7
2±

0.
34

a 
0.

8 
17

.9
2±

0.
32

a 
17

.6
1±

0.
34

a 
0.

4 
10

−
20

 
17

.7
2±

0.
68

a 
18

.0
4±

0.
50

a 
0.

5 
18

.0
5±

0.
73

a 
17

.7
1±

0.
43

a 
0.

8 
17

.8
5±

0.
62

a 
17

.9
2±

0.
58

a 
0.

9 
20

−
30

 
0.

98
±0

.1
6a

 
1.

23
±0

.2
9a

 
0.

7 
1.

15
±0

.1
8a

 
1.

06
±0

.2
8a

 
0.

5 
0.

98
±0

.1
3a

 
1.

22
±0

.3
0a

 
0.

8 
C

/N
 r

at
io

 
 

 
 

 
 

 
 

 
 

0−
10

 
25

.0
9±

0.
01

a 
25

.0
4±

0.
01

a 
0.

9 
25

.0
6±

0.
01

a 
25

.0
6±

0.
01

a 
0.

8 
25

.0
6±

0.
01

a 
25

.0
7±

0.
01

a 
0.

4 
10

−
20

 
25

.0
8±

0.
03

a 
25

.0
6±

0.
02

a 
0.

4 
25

.0
6±

0.
03

a 
25

.0
7±

0.
02

a 
1.

0 
25

.0
7±

0.
03

a 
25

.0
6±

0.
03

a 
0.

9 
20

−
30

 
40

.0
9±

2.
39

a 
38

.6
4±

2.
21

a 
0.

7 
38

.6
6±

2.
63

a 
40

.0
6±

1.
92

a 
0.

5 
38

.8
7±

1.
76

a 
39

.8
6±

2.
75

a 
0.

8 
T

he
 “

±”
 r

ep
re

se
nt

 t
he

 s
ta

nd
ar

d 
er

ro
r 

of
 m

ea
n.

 D
if

fe
re

nt
 l

et
te

rs
 i

n 
bo

ld
 f

ol
lo

w
in

g 
va

lu
es

 w
ith

in
 l

in
es

 d
en

ot
e 

a 
st

at
is

tic
al

ly
 s

ig
ni

fi
ca

nt
 d

if
fe

re
nc

e 
be

tw
ee

n 
th

e 
dr

ai
ne

d 
vs

. u
nd

ra
in

ed
, m

ou
nd

ed
 v

s.
 u

nm
ou

nd
ed

 a
nd

 f
er

til
is

ed
 v

s.
 u

nf
er

til
is

ed
 tr

ea
tm

en
t (

P 
< 

0.
05

).
  



 35 

2.3.2 Soil bulk density and pH 

 

Soil samples collected before the site was drained and mounded did not vary 

significantly in bulk density. The mean bulk density was 0.16±0.01 g cm−3 in the pre-

drained and undrained plots, 0.15±0.01 and 0.16±0.01 g cm−3 in the pre-mounded and 

unmounded subplots. In the pre-fertilised and unfertilised subplots the mean soil bulk 

density was 0.17±0.01 g cm−3 and 0.16±0.01 g cm−3, respectively. Figure 2.4 shows 

the bulk density of samples collected in August 2007 and June 2008. The soil bulk 

density increased with soil depth across treatments (P=0.0001, Fig. 2.4). Soil bulk 

density in the 0−10 cm layer ranged from 0.12 to 0.15 g cm−3. In the 10−20 cm and 

the 20−30 cm layers, the soil bulk density ranged from 0.18 to 0.23 g cm−3 and 1.02 to 

1.13 g cm−3 across treatments, respectively. Soil bulk density from both sampling 

occasions was not affected by drainage or fertilisation (Fig. 2.4). Mounding increased 

soil bulk density in the 0−10 cm layer in the first year (P=0.05) and second year of 

study (P=0.001), respectively. Mounding also increased the soil bulk density in the 

10−20 cm layer in both dates (P=0.001, Fig. 2.4) 

 

Soil pH in all treatments varied with soil depth (P=0.0001, Fig. 2.5). Soil pH varied 

from 3.9 to 4.0 in the 0−10 cm, 3.8 to 3.9 in the 10−20 cm and 4.1 to 4.2 in the 20 to 

30 cm layer. Soil pH was not affected by drainage, mounding or fertilisation (Fig. 

2.5). 

 

2.3.3 Soil microbial biomass C 

 

Mean values for soil microbial biomass carbon for all three sampling occasions are 

shown in Table 2.2. Soil microbial biomass carbon ranged from 1.54±0.28 to 

3.50±0.07 mg g−1 and from 1.98±0.21 to 2.85±0.23 mg g−1 in the drained and 

undrained plots. Soil microbial biomass carbon was marginally increased by drainage 

in February 2007 (P=0.06). In the mounded and unmounded treatment, the soil 

microbial biomass carbon ranged from 1.92±0.25 to 3.27±0.20 and from 1.77±0.22 to 

3.08±0.19 mg g−1. The microbial biomass was slightly higher in the unfertilised 

subplots compared to their fertilised counterparts (Table 2.2). The soil microbial 

biomass carbon ranged from 1.74±0.22 to 3.06±0.17 and from 1.95±0.25 to 3.29±0.21 
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mg g−1 in the fertilised and unfertilised subplots, respectively. The three sampling 

dates differed significant in soil microbial biomass (P=0.0001). The microbial 

biomass in all treatments was lower in November 2006 and higher in August 2007. 

 

2.3.4 Inorganic N 

 

The mean values of inorganic N (ammonium and nitrate) in the 0−20 cm soil depth 

for all treatments are given in Table 2.3. Ammonium was not affected by drainage in 

August 2007 (P=0.18) and in February 2008 (P=0.3). Ammonium was significantly 

increased by fertilisation and mounding in August 2007 (all P=0.01), but not in 

February 2008 (Table 2.3). In none of the sampling occasions was nitrate affected by 

drainage, mounding or fertilisation (Table 2.3). 

 

2.3.5 Aboveground plant biomass 

 

Standing above-ground biomass measured as dry mass for all treatments is shown in 

Table 2.4. After a year of establishment, aboveground plant biomass in the drained 

plots (7.76 ±0.35 t ha−1 DM) was significantly higher than (P=0.04) in the undrained 

plots (6.03±0.30 t ha−1 DM). Aboveground plant biomass in the mounded subplots 

(6.84±0.36 t ha−1 DM) was not significantly different (P=0.9) from the unmounded 

subplots (6.95±0.47t h−1 DM). Aboveground plant biomass in the fertilised subplots 

(7.53±0.37 t ha−1 DM) was significantly higher than (P=0.002) in their unfertilised 

counterparts (6.26±0.37 t ha−1 DM). 
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Figure. 2.4. Bulk density across treatments in a) August 2007 and b) June 2008. The 
vertical bars represent standard error of means (n=12). Different letters in bold 
indicate a significant difference in soil bulk density between the drained vs. 
undrained, mounded vs. unmounded and fertilised vs. unfertilised treatment (P<0.05).  
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Figure 2.5. Soil pH across treatments in a) August 2007 and June 2008. The vertical 
bars represent standard error of means (n=12). Different letters indicate a significant 
difference soil bulk density between the drained vs. undrained, mounded vs. 
unmounded and fertilised vs. unfertilised treatment (P<0.05).  
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afforestation and replanting clearfelled plantations have been shown to decrease soil 

carbon contents of peaty gley soils (Zerva and Mencuccini 2005b; Zerva et al. 2005) 

because the practices may create aerobic conditions favourable for decomposition 

(Armentano and Menges 1986; Trettin et al. 1995). The results of the present study 

showed that the soil carbon concentration varied with soil depth and was higher in the 

0−20 cm soil layer. Drainage decreased soil organic C concentration in the 0−10 cm 

layer by 7 to 9%, similar to patterns reported in experiments conducted elsewhere 

(e.g., Ryan et al. 1992; Rab 1994). The decrease in soil organic carbon contents in this 

study was lower compared to values reported for these others studies, probably 

because of different climates, soil types, the intensity of disturbance and the time 

since disturbances occurred. The soil organic carbon concentration in the present 

study decreased with increasing depth, suggesting that drainage caused disturbance 

near the soil surface (e.g., Schmidt et al. 1996). 

 

The decomposition of organic matter in peat soils is controlled by temperature, soil 

moisture, fertility and the quality of organic matter (Oades 1988). Drainage lowered 

the soil water table depth in this study and increased soil temperature and decreased 

soil moisture. These changes and disturbances of soil properties such as soil structure 

and the breakage of soil aggregates caused by drainage may have made the soil to be 

more aerobic and favourable for decomposition (e.g., Smith et al. 1994; Olson et al. 

1996; Merino et al. 1998; Zerva et al. 2005; Tate et al. 2006; Minkkinen et al. 2008). 

Several studies demonstrated that soil organic carbon is lost from drained organic 

soils through both oxidation and enhanced soil respiration linked to improved aeration 

and increased temperature (Raich and Schleisnger 1992; Rey et al. 2002; Euskirchen 

son et al. 2003; Saiz et al. 2006). The concentration of total N in the top soils was 

decreased by drainage, probably because the increase in soil temperature and aeration 

created aerobic conditions that favoured the mineralisation of N in the organic matter 

and increased N uptake by plants or N losses as N2 and N2O emissions or as dissolved 

nitrate. Several studies demonstrated that site preparation practices increase leaching 

in upland and boreal forest soils (Nieminen 1998; Mannerkoski et al. 2005; Piirainen 

et al. 2007). The decrease in the concentration of total N in the present study is 

supported by results of studies conducted elsewhere, which reported that forest 

management practices such as timber harvesting and mechanical site preparation 
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decrease total N concentration  (Smith et al. 1994; Merino et al. 1998). Fertilisation 

increased the soil organic carbon in the 0−10 cm layer in the first year of study, 

similar to the effects observed in boreal and temperate forest soils (e.g., Berg and 

Matzner 1997; Franklin et al. 2003; Foereid et al. 2004; Olsson et al. 2005; Jandl et al. 

2007). The increase in soil organic carbon following fertilisation has been attributed 

to the suppression of ligninolytic enzymes of soil microbes and by chemical 

stabilisation (Arnebrant et al. 1996; Jandl et al. 2007). The effect of fertilisation on 

soil organic carbon was not evident at the end of this study, probably because N 

uptake by plants, losses through leaching and as oxides of nitrogen depleted the pool 

of additional N in the second year of study.  

 

2.4.2 Bulk density  

 

As demonstrated in previous studies (e.g., Merino et al. 1998; Zerva 2004), 

mechanical site preparation increased the soil bulk density in mounded subplots. 

Mounding increased the bulk density from 0.12±0.00 to 0.14±0.01 g cm−3 in the 

0−10cm layer and from 0.18±0.00 to 0.21±0.01g cm−3 in the 10−20 cm layer at the 

end of year 1 of study. At the end of the study, the bulk density in the 0 to 10 cm layer 

was 0.12±0.01 and 0.15±0.01 g cm−3 in the unmounded and mounded subplots, while 

in the 10−20 cm layer, the bulk density was 0.21±0.01 and 0.23±0.01 g cm−3 in the 

unmounded and mounded subplots, respectively. The increase in bulk density in the 

mounded subplots may suggest that equipment used for mounding caused soil 

compaction. Similar results have been reported in compacted forest soils following 

timber harvesting and site preparation (Cullen et al. 1991; Johnson et al. 1991; Merino 

et al. 1998; McNabb et al. 2001). The increase in soil bulk density in the mounded 

subplots was lower compared to values reported in these other studies, probably due 

to different climates, soil types and the intensity of compaction. For example, Cullen 

et al (1991) found that soil the bulk density increased by 21−76% in severely 

compacted sites at 15 cm soil depth following timber harvesting in Western Montana. 

Merino et al. (1998) found that different timber management practices in a hilly area 

in Northern Spain changed the soil bulk density by 17%. 
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The soil bulk density is closely related to other soil physical properties such as 

texture, structure, porosity, aeration and hydraulic conductivity which may be 

changed by compaction (Henderson 1995; McNabb et al. 2001; Block et al. 2002). 

These other soil properties were not evaluated, but some have been reported to change 

after timber harvesting and site preparation (e.g., Staaf and Olson 1991; Farrish et al 

1993). Soil compaction may reduce site productivity and affect regeneration and 

growth of planted seedlings (e.g., Smith et al. 1994; Miller et al. 1996).  

 

The soil bulk density in this site increased with soil depth, similar to the effects 

reported in other studies (e.g., Tamminen and Starr 1994; Zerva 2004). For example, 

Tamminen and Starr (1994) investigated the relationship between the soil bulk density 

and organic matter content, textural properties and depth and found that the soil bulk 

density increased with soil depth and remained uniform at soil depth greater than 20 

cm. Tamminen and Starr (1994), Henderson (1995) and Prevost (2004) reported that 

the soil bulk density can be altered directly by compaction or indirectly through loss 

of soil organic matter. 

 

2.4.3 Soil microbial biomass C 

 

Soil microorganisms regulate soil nutrients through mineralisation of soil organic 

matter and solubilisation of soil minerals (Mazzarino et al. 1993; Franzluebbers et al. 

1994; Fritze et al. 1994; Blazier et al. 2005) especially in infertile natural and 

agricultural systems (Yao et al. 2000). The soil microbial biomass has been estimated 

to represent 2−5% carbon (Jenkinson and Ladd 1981; Smith and Paul 1990) and 

3−5% of soil nitrogen (Paul et al. 1999). Soils that are cultivated continuously may 

contain fewer microorganisms than their uncultivated counterparts (McGill et al. 

1986). The soil microbial population and activity is influenced by numerous factors 

such as climate, soil carbon, nutrient availability and pH (Hossain et al. 1995). 

 

Infertile saturated soils with a cold substrate (e.g., Lieffers and Rothwell 1986; 

Macdonald and Lieffers 1990) may reduce the growth and activity of soil 

microorganisms. However, drainage carried out to lower the soil water table for 

forestry and agriculture has been shown to increase substrate temperature and oxygen 
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availability as well as nutrients (e.g., Lieffers and Rothwell 1987; Lieffers 1988) and 

may favour soil microbes and their activity. Soil microbes are expected to respond to 

changes in the soil environment caused by drainage (Schnürer et al. 1985).  

 

The activity of soil microorganisms measured as microbial biomass carbon was not 

affected by drainage, mounding or fertilisation. Drainage increased biomass carbon 

slightly in February and August 2007. It seems that the improvement in the soil 

environment caused by drainage slightly stimulated soil microorganisms. Low soil pH 

and poor soil fertility in this site may have affected the soil microbial population and 

activity. The microbial biomass carbon was low in November 2006 and February 

2007, suggesting that the ecosystem activity was low during the winter months and 

nutrients required by soil microorganisms and plants was probably met by the 

background nutrient levels of soils (e.g., Insam et al. 1989). In the late summer 

(August 2007) the soil microbial biomass in all treatments was higher when 

temperatures were higher. It seems, therefore that treatment effects may have been 

masked by seasonal effects. This is consistent with finding of previous studies which 

found that fluctuations in soil temperature affected soil microbial biomass (Lynch and 

Panting 1982; Sarathchandra et al. 1988; 1989).  

 

The microbial biomass carbon in the fertilised subplots was slightly lower than in the 

unfertilised subplots. Studies by Yates et al. (1997) and Bardgett and Cook (1998) 

also demonstrated that the soil microbial biomass carbon was lower in fertilised than 

in unfertilised grasslands. The inhibitory effect of inorganic N on soil microbes has 

been attributed to the direct effect of fertilisers on soil microorganisms (Lovell et al. 

1995), resulting from lowering of soil pH, inhibition of fungal ligninolytic enzyme 

production and a decreased production of enzymes that degrade nitrogen-containing 

organic matter (Smolander et al. 1994; Ettema et al. 1999; Vance and Chapin 2001). 

Overall, this result is comparable to previous studies which failed to detect significant 

effects of fertilisation on soil microbial biomass carbon (e.g., Castro et al. 1994; Vose 

et al. 1995; Sarathchandra et al. 2001). In contrast, increased microbial biomass 

carbon has been reported in fertilised forest (Hobbie 2000; Vestgarden 2001) and 

agricultural soils (Lych and Panting 1982; Hesebe et al. 1985). Other studies found 

that fertilisation decreased labile C in coniferous forest soils (Thirukkumaran and 

Parkinson 2000; Homann et al. 2001) in grassland as well as in pasture soils (Christie 
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and Beattie 1989; Bristow and Jarvis 1991). Inconsistencies in these studies has been 

attributed to different rates and formulations of fertilisers used, site productivity and 

the duration of each study (Thirukkumaran and Parkinson 2000). 

 

Plant species composition was not assessed in this study; it is also possible that 

changes in plant species composition caused by fertilisation (e.g., Bardgett et al. 1999; 

Wardle et al. 1999) and drainage may have indirectly affected soil microbial 

population and activity. Plants roots are a significant source of carbon (Wheatley et al. 

1990) and supply soil microorganisms with highly labile substances such as 

carbohydrates, amino acids and fatty acids, which may stimulate microbial growth 

and division (Qualls 2000; Blazier et al. 2005). Norton and Firestone (1991) found 

that 57% of bacterial cells in Ponderosa pine seedlings were close to the roots, while 

only 41% were active in the bulk soil. Bardgett et al. (1999) observed that temporal 

changes in the productivity of different grass species affected the soil microbial 

community. Hence, it was surprising to find no differences in microbial biomass 

carbon across treatments in this study given that different levels of aboveground plant 

biomass productivity was found in fertilised and drained plots. Ecosystems with fewer 

species like the present study site, may not sustain a large community of 

microorganisms because of less diversity in roots exudates. 

 

Soils in this site are acidic, with pH ranging from 3.8 to 4.2 and the low pH may have 

hindered the composition, multiplication and growth of soil microorganisms (e.g., 

Shah et al. 1990; Nodar et al. 1992). Priha et al. (2001) and Smolander and Kittunen 

(2002) found that soil microbial biomass carbon was higher in hardwood forest soils 

than in acidic coniferous soils. They attributed the difference to either root distribution 

and activity or the chemical composition of the organic matter. Meharg and Killham 

(1990) observed that the amount of carbon lost from Lolium perenne increased from 

12.3 to 30.6% when soil pH increased from 4.3 to 6.0. They suggested that changes in 

the microbial biomass and plant nitrogen limitation could have resulted in increased 

exudation with increasing pH. In general, acidic soils favour the growth of the fungal 

population relative to bacterial populations (Nodar et al. 1992). 
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2.4.4 Inorganic N and aboveground plant biomass 

 

Drainage of peat soils increases N mineralisation and subsequent nutrient availability 

to plants (Grootjans et al 1985; Cabrera 1993; Updegraff et al.1995; Bridgham et al. 

1998). In this study, drainage did not affect inorganic N (NH4
+ and NO3

−), probably 

because increased N mineralisation was compensated by increased losses. 

Ammonium (NH4
+) availability was increased by mounding, probably due to the 

increase in net mineralisation of the organic matter on the top of mounds. This was 

not surprising, because changes in the microtopography related to mounds and 

hollows after mounding modify a number of important environmental variables (e.g., 

Liechty et al. 1997) such as soil temperature and moisture (e.g., Nohrstedt 2000) as 

well as the thickness and distribution of organic and mineral soil layers (e.g., Beatty 

and Stone 1986; Schaetzl et al. 1990) which may lead to N mineralisation. Mounding 

buried the soil organic layers beneath the mineral soil of mounds and increased soil 

temperature and aeration. These changes may have favoured microbial activity on the 

top of mounds and accelerated N mineralisation. Nitrate was not affected by 

mounding in this study. 

 

The fertilisation increased NH4
+ in the first year, but at the end of this study no 

significant difference was detected between fertilised and unfertilised subplots. The 

reduction in NH4
+in the fertilised subplots at the end of study was probably caused by 

increased N uptake by plants or losses as oxides of nitrogen in the first year of study. 

Nitrate was not affected by fertilisation. It is possible that NO3
−was leached to deeper 

layers or lost through drainage water. Nitrate leaching from soil has been reported in 

experiments conducted in sites with different climate, soils types and plants (Baker 

and Johnson 1981; Bergstrom and Brink 1986). 

 

Standing above-ground plant biomass production measured a year after site 

preparation was increased by drainage. The increase probably resulted from increased 

soil temperature and improvement in aeration of the root zone which favoured root 

growth and increased nutrient availability. The lack of oxygen in water-saturated soils 

has been shown to have negative effect on plant growth by limiting root and shoot 

growth (e.g., Sena Gomes and Kozlowski 1980b; Lieffers and Rothwell 1986; 
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Grossnickle 1987; Huang et al. 1994; McDonald et al. 2001; Malik et al. 2001, 2002). 

In addition, increased substrate temperature and oxygen availability in the drained 

plots may have favoured microbial activity, and thus enhanced the mineralisation of 

organic matter, which increased the availability of nutrients, since decomposition is 

enhanced under aerobic conditions (e.g., Clymo 1984). 

 

Fertilisation also increased above-ground plant biomass production due to availability 

of inorganic N from the applied fertiliser. The uptake of potassium and phosphorus by 

plants from the applied fertiliser may also have enhanced their growth. Other studies 

conducted in Calluna dominated vegetation on heathland also found that N 

fertilisation increased plant growth (e.g., Aerts et al. 1991; Caporn et al. 1995; Uren et 

al. 1997; Carroll et al. 1999). The increase in aboveground plant biomass in the 

fertilised subplots may suggest that our study site is poor in nutrient. 

 

2.5 CONCLUSION 

 

Drainage decreased the soil organic carbon and nitrogen concentration in the top 10 

cm layer of peaty gleys soils. Mounding increased the soil bulk density in the 0 to 20 

cm layer of peaty gley soils. Site preparation practices did not change soil pH and 

microbial biomass carbon. The availability of ammonium was increased by mounding 

and fertilisation in the first year of study, it increased plant growth during the first 

year of study, which was also found on drained plots. 
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CHAPTER 3 
 

EFFECT OF SITE PREPARATION FOR AFFORESTATION ON 

CO2 EMISSIONS FROM A PEATY GLEY SOIL 
 

3.1 INTRODUCTION 

 

The current estimate of soil C pools averages 1500 Pg C, which is about 3 times the 

total C stored in vegetation (Eswaran et al. 1993) and almost twice the amount in the 

atmosphere (Schimel 1995). The soil surface CO2 efflux or soil respiration arise from 

respiration by plant roots and living organisms, and from the mineralisation of organic 

matter, dead microorganisms, soil animals and dead plants (Gough et al. 2005; 

Kuzyakov 2006; Subke et al. 2006; Ding et al. 2007; Oleszczuk et al. 2008). Soil 

respiration constitutes an important source of CO2 in terrestrial ecosystems and a key 

component of the global C cycle (Raich and Schlesinger 1992; Rustad et al. 2000). 

The atmospheric concentration of CO2 has increased from 280 ppm (parts per million) 

since the beginning of the industrial revolution to the current level of 380 ppm 

(Falkowski et al. 2000). This increase has been attributed largely to natural 

disturbances (e.g., fire, windthrow), anthropogenic land use changes (e.g., 

deforestation, agricultural cultivation, afforestation) and burning of fossil fuels 

(Rastogi et al. 2002; Heath et al. 2005; Watson and Noble, 2005). Increased CO2 

concentrations contribute to increasing atmospheric temperatures by trapping longer 

wavelength of radiation in the atmosphere (Nowak and Crane 2002; Rastogi et al. 

2002).  

 

Soil respiration rates are influenced by interactions among several factors. Soil 

temperature and soil moisture are the most important factors controlling soil 

respiration rates (Davidson et al. 1998; Bowden et al. 1998; 2004; Maier and Kress 

2000; Fisk and Fahey 2001; Rustad et al. 2001, Kiese and Butterbach-Bahl 2002; Liu 

et al. 2002; Pangle and Seiler 2002; Hashimoto et al. 2004). Soil properties and 

availability of C and N (Grant and Rochette 1994; Randerson et al. 1996; Boone et al. 

1998; Pregitzer et al. 1998), current photosynthetic rates (Högberg et al. 2001), land 

use and management practices (Paustian et al. 1997; Lal 2002) have also been shown 

to affect on soil respiration. Soils in areas where temperature and moisture are not 
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limiting (e.g., tropical forests) respire more than those located in cold and dry areas 

such as the tundra, northern bogs and deserts (Rhoades et al. 2000; Raich et al. 2002). 

Soil respiration releases 10−15 times more CO2 to the atmosphere than fossil fuel 

burning (Andres et al. 1996; Verburg et al. 1998). 

 

Peatlands have been a net sink of C for many centuries (Christensen et al. 1999; 

Oechel et al. 2000; Roehm and Roulet 2003). Saturated soils and low temperatures in 

these C rich ecosystems limit microbial decomposition and lead to accumulation of 

soil organic matter as peat (Bubier et al. 1998; Ström and Christensen 2007 Turunen 

and Turunen 2002). In recent years, evidence has been accumulating that globally the 

release of C in peatlands now exceeds the C uptake (e.g., Turetsky et al. 2002; Roulet 

et al. 2007) due to changes in land use and drainage. 

 

Drainage and cultivation of peat soils for agriculture and forestry uses has been one of 

the most important forms of human disturbances in boreal and temperate peatlands in 

recent decades (Armentano and Menges 1986; Gorham 1991; Laine and Minkkinen 

1996). Drainage and cultivation can change peatland soils from net sinks to net 

sources of atmospheric CO2. For example, several studies have reported that changes 

in organic matter production and decomposition processes after drainage and 

cultivation increase CO2 emissions from peatland soils (Maljanen et al. 2001b; 

Minkkinen et al. 2002; Lohila et al. 2003). Lowered soil water table depth increases 

soil temperature and the volume of aerated organic matter, which increases 

decomposition rates and soil respiration in peatland soils (Trettin et al. 1996; 

Minkkinen et al. 2008). The growth of trees planted on infertile soils is often 

stimulated by fertilisation (Elser et al. 2007; LeBauer and Treseder 2008). The impact 

of fertilisation, particularly N, on soil C is not well understood (Grandy et al. 2008; 

Minkkinen et al. 2008; Reay et al. 2008). Forest fertilisation may increase (Minkkinen 

et al. 2008) or decrease (Jandl et al. 2007) organic matter decomposition and soil 

respiration. 

 

Most studies on the effect of drainage on C fluxes have been conducted in boreal and 

continental peatland sites (e.g., Lafleur et al. 2005; Mäkiranta et al. 2007; Minkkinen 

et al. 2007). The effects of site preparation (drainage and mounding) carried out prior 
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to afforestation on soil respiration in peaty gley soils under UK conditions have not 

received sufficient attention. We hypothesised that (a) drainage, mounding and 

fertilisation would increase soil CO2 fluxes (b) drainage and mounding would affect 

soil temperature, soil moisture content and water table depth and (c) soil CO2 fluxes 

are controlled by soil temperature, moisture content and water table depth. The 

objectives of this study were to (i) evaluate the effect of drainage; mounding and 

fertilisation on soil CO2 efflux over a period of two years, (ii) assess the effect of the 

three practices on soil temperature, moisture content and water table depth and (iii) 

evaluate relationships between soil CO2 fluxes and soil temperature, soil moisture and 

soil water table. 

 

3.2  MATERIALS AND METHODS 

 

3.2.1 The study site description  

 

The study site has been described in Chapter 1. Briefly, the study was established on 

unimproved grassland between two second rotation Sitka spruce stands at Harwood 

Forest located in NE England (55° 10’ N, 2° 3’W). 

 

3.2.2 Experimental design and preparation 

 

The experiment is described in Chapter 2. Briefly, the experiment has a full factorial 

split−plot design with six plots measuring 30 × 8 m established in May 2006. Three 

plots were selected at random and mechanically drained by cutting open ditches 

placed 1.5 m from plot edges and excavated to depth of 65−70 cm. Mounds were 

made by excavating the soil and by turning it upside down adjacent to the dug pit 

(depth 30−40 cm, width 40 cm), thus burying the litter and organic layers of the 

original soil beneath the mineral layer of mounds. 

 

3.2.3 The measurement of CO2 efflux from soil  

 

Gas samples for soil CO2 fluxes were collected from 5 July 2006 to 7 May 2008 with 

manual closed static chambers (e.g., Smith et al. 1995). Gas samples were collected 
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weekly in July, bi−weekly between August and September 2006 and finally at 

approximately monthly intervals from October 2006 to May 2008. The soil CO2 

efflux measured here includes heterotrophic and autotrophic respiration, although the 

autotrophic respiration by above ground plant parts was excluded by clipping them at 

the base, whenever new shoots appeared inside collars. Samples were collected 

between 0900 and 1430 hrs to minimise changes in soil respiration associated with 

diurnal cycles (Davidson et al. 1998). A total of sixty collars (inside diameter 40 cm, 

height 10 cm) were inserted into the soil to a depth of 5 cm, three weeks prior to the 

start of measurements and left permanently in the field. The collars were positioned 

randomly in groups of either two or three for each subplot depending on whether the 

subplot had been mounded. If so, the sampling was stratified in such a way that one 

collar was placed on top of a mound, one inside a hollow and one on undisturbed 

ground. For unmounded subplots instead, only two collars were used, randomly 

placed on undisturbed ground. Mounds were estimated to cover about 8% of the total 

surface area of mounded subplots, and the hollows from which the peat had been 

excavated, estimated to occupy a similar proportion. 

 

A total of twenty chambers (inside diameter 40, height 20 cm) were used to collect air 

samples by placing them on top of the already positioned collars, and then rotating 

them until all sixty had been measured. A seal between the chamber and the collar 

was obtained by circular elastic rubber bands on the chamber and collar outer surface. 

Chambers were sealed with aluminium lids with foam rubbers on the underside and a 

sampling port fitted with a three-way stopcock. Air samples were collected from the 

headspace of chambers with 60 ml polypropylene syringes and transferred into gas-

tight bags (Cali-5-bond, Calibrated Instruments Inc. USA). The chambers were sealed 

for 30−40 minutes and a linearity check showed that linear interpolation of two points 

taken at the start and at the end of the closure gives a good approximation of the true 

CO2 efflux (Zerva and Mencuccini 2005, unpubl. data). Linear accumulation or 

depletion of CO2 was also checked every two months during the first year of the 

present study. For the vast majority of the checks conducted, linearity was ensured by 

linear regression coefficients higher than R2=0.99. Ambient air samples taken 

randomly at the height of chambers gave the initial concentration of CO2. Air samples 

were transferred to the laboratory and analysed by gas chromatography, using a 
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Perkin Elmer Model 310 GC (Perkin Elmer Ltd, Beaconsfield, Bucks, UK) with a 

thermal conductivity detector (TCD). External standards of 390, 1093, 5262 and 

10100 ppm were used for calibration. The concentration of CO2 in gas samples 

collected from chambers was calculated with the following equation (Zerva 2004): 

 

Fs= d×V ×(Ct−C0) 
          A       t 

 

Where: F is the CO2 efflux (g m−2 d−1), d (g m−3) is the gas density calculated on the 

assumption that 1 mole of gas (1 mole of CO2 is 44 g) occupies 22.4 × 10−3 m3 of 

volume at 273 K, V is the volume of chamber (m3), Ct is the concentration of gas 

(µmol mol−1) inside chamber after closure time t (d), C0 is the initial concentration of 

the gas (µmol mol−1), A is the area of the chamber (m2) and t is the time of chamber 

closure. 

 

3.2.4 Measurement of environmental variables 

 

Soil temperatures at 1, 5 and 10 cm depth (from now on T1, T5 and T10) were 

measured simultaneously with soil CO2 efflux with a digital temperature probe (Fisher 

Scientific) close to each chamber on each date. In addition, to digital temperature 

measurements, a system of temperature probes was installed to continuously monitor 

temperatures at 5 and 10 cm depth in one drained and one undrained plot. Soil 

temperature was logged automatically every hour by a datalogger (Campbell 

Scientific Ltd, Loughborough, UK).  

 

Soil moisture was measured as volumetric content (m3 m−3) close to each chamber at 

5 cm depth using a Theta probe (KT1-Basic, Delta-T Devices Ltd, Cambridge, UK). 

An effort was made to insert the probe in a similar position in order to minimise 

disturbance of the soil from its frequent insertion. In addition to Theta probe 

measurements, a system of time domain reflectometry (TDR) probes was installed in 

one drained and one undrained plot to monitor soil moisture content continuously in 

the top 15 cm of the soil profile. Soil moisture was recorded by data logger (Campbell 

Scientific) every 24 hours. Calibration was carried out against soil moisture contents 
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measured at the study site and determined gravimetrically after oven drying over night 

at 105°C and corrected to volumetric values using the measured bulk density. 

 

The water table depth (cm from soil surface) was measured from dip wells. One dip 

well was established in each subplot by removing a soil core (diameter 5 cm) to 80 cm 

depth. PVC pipes (length 1 m, diameter 5 cm) with several small holes (diameter 0.5 

cm) drilled laterally were inserted inside to act as liners. Dip wells were always sealed 

to prevent water entering them from above. 

 

3.2.5 Statistical analysis 

 

All data were checked for normality and log-transformed when required. Analyses 

were carried out both on averaged monthly fluxes as well as on seasonal and yearly 

totals. The general linear model (GLM) was used for analysis of variance. The general 

linear model tested for effects of three main factors (drainage, mounding and 

fertilisation) entered as fixed factors and plot entered as random factor nested within 

drainage. In case of monthly measurements, month was also entered as a repeated 

measures factor. The initial GLM included all possible second and third-order 

interactions. If interactions were not found to be significant, they were excluded and 

the model was run again without them to confirm the significance of the main factors. 

In case of significant interactions, the dataset was split and separate analyses were run 

for each combination. All analyses were run in Minitab 15 using the GLM procedure 

and the significance level was set at 0.05. Tukey’s pairwise comparison test was 

applied to determine significant differences between treated and untreated 

plots/subplots. For all analyses, values from individual chambers were averaged 

within each subplot. For the mounded subplots, weighted averaging was done by 

weighing each flux by the respective area covered by mound hills, mound hollows 

and undisturbed ground. Correlation analyses were performed in Minitab to determine 

relationships between environmental variables. If the variables were found to be 

correlated, a forward stepwise multiple linear regression analysis was performed in 

Minitab 15 to determine their relationship with soil CO2 fluxes. 
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3.3 RESULTS 

 

3.3.1 Effect of site preparation on environmental variables 

 

Soil temperature (T1, T5 and T10) are shown in Fig. 3.1a−f and 3.2a−c. Soil 

temperature varied from season to season. High soil temperatures were recorded in the 

summer to early autumn, while low temperatures occurred in the winter months. The 

month to month variability in soil temperature at all depths was highly significant 

(P=0.0001, Table 3.1). There were no significant differences in soil temperature 

among plots (P=0.06). Soil temperature at all measured depths was significantly 

increased by drainage (P=0.0001 for T1, P=0.05 for T5 and P=0.01 for T10, Table 3.1). 

Mounding increased soil temperature at 1 and 5 cm depth (P=0.0001 for T1 and 

P=0.01 for T5) but not at 10 cm depth (P=0.6) (Table 3.1). Soil temperatures were 

more variable at 1 cm depth than at 5 and 10 cm depth. Soil temperature at all depths 

was not affected by fertilisation (Table 3.1). Figure 3.3 shows soil temperature 

recorded continuously by datalogger at 5 and 10 cm depth in a drained and an 

undrained plot. A very similar seasonal course was reported here.  

 

There was no significant difference in water table depth among plots (P=0.9, Table 

3.1). The water table depth varied from month to month (P=0.0001, Table 3.1) and 

was significantly decreased by drainage (P=0.0001, Fig. 3.4a−c). Mounding (P=0.7) 

or fertilisation (P=0.9) did not affect the water table depth (Table 3.1). There was no 

significant difference in soil moisture content among plots (P=0.7, Table 3.1). The 

month to month variability in moisture content was highly significant (P=0.0001, Fig. 

3.4d−f). The soil moisture content was significantly decreased by mounding 

(P=0.0001) and drainage (P=0.01). Fertilisation did not affect the soil moisture 

content (P=0.3, Table 3.1). Figure 3.5 shows the soil moisture content measured 

continuous at the top 15 cm of the soil profile by TDR probes and recorded by 

datalogger in a drained and an undrained plot. A very similar seasonal pattern was 

observed here. 
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Table 3.1 Summary result of the general linear model of environmental variables. 
Parameter T1°C T5°C T10 °C  W(m3 m−3 ) WT(cm) 
Drainage <0.0001 0.05 <0.01 <0.009 <0.0001 
Plot 0.06 0.3 0.5 0.07 0.9 
Mounding <0.0001 0.01 0.6 <0.0001 0.7 
Fertilisation 0.7 0.5 0.4 0.3 0.9 
Month <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

P values in bold are statistically significant at P<0.05.  
 
 

Figure 3.1. Averaged monthly soil temperature for all depths (T1, T5 and T10) for: a−c 
drained and undrained plots and d−f mounded and unmounded subplots (n=34). The 
vertical bars are standard errors of mean.  
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Figure 3.2 Averaged monthly soil temperature for all depths (T1, T5 and T10) for the 
fertilised and unfertilised subplots (n=34). The vertical bars represent the standard 
error of mean. 
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Figure 3.3. Soil temperature at 5 and 10 cm depth recorded continuous by datalogger 
at a) drained plot from 17 May 2006 to 16 April 2008 and b) undrained plot from 17 
May 2006 to 14 January 2008. 
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Figure 3.4. Averaged monthly water table depth (a−c) and soil moisture content (d−f) 
for all treatments (n=34). The vertical bars indicate the standard error of mean. 

 
Figure 3.5. Soil moisture of the top 15 cm of the soil profile recorded continuous by 
TDR probes and datalogger in a drained (17 May 2007 to April 2008) and undrained 
plot (17 May 2006 to 14 January 2008). 
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3.3.2 Effects of site preparation of soil CO2 efflux 

 

There were significant differences in CO2 fluxes among plots (P=0.0001, Table 3.2). 

There was no significant interaction between the three practices, except when the 

factors month and plot were also included (Table 3.2). 

 

Table 3.2.Summary result of the general linear model of soil CO2 fluxes for all the 
practices. 
Sources of variation F P 
Drainage 71.85 <0.001 

Plot 2.56 0.038 

Mounding 3.21 0.07 
Fertilisation 17.10 <0.0001 

Month 249.09 <0.0001 

Drainage×Fertilisation 0.01 0.96 
Drainage×Mounding 3.83 0.12 
Mounding×fertilisation 0.01 0.98 
Drainage×Month 1.71 0.05 

Mounding×Month 1.40 0.15 
Fertilisation×Month 2.08 0.01 

Mounding×Plot 0.91 0.54 
Fertilisation×Plot 0.37 0.82 
Month×Plot 3.61 0.0001 

Drainage×Fertilisation×Mounding 0.92 0.29 
Drainage×Mounding×Month 2.25 0.04 

Drainage×Fertilisation×Month 0.94 0.54 
Mounding×Fertilisation×Month 1.78 0.04 

Mounding×Fertilisation×Plot 3.85 0.007 

Mounding×Month×Plot 1.02 0.47 
Fertilisation×Month×Plot 0.88 0.712 
Drainage×Mounding×Fertilisation×Month 1.23 0.252 
P Values in bold are statistically significant (P<0.05). 
 

3.3.2.1  Effects of drainage on soil CO2 efflux 

 

The soil CO2 efflux was significantly increased by drainage (P=0.001, Table 3.2). 

Drainage increased soil respiration in 2006−07 (P=0.001) and 2007−08 (P=0.001). 

Averaged daily soil CO2 emissions are shown in Fig. 3.6a. Averaged CO2 fluxes were 

higher in 2006−07 than in 2007−08 (P=0.01). The average soil CO2 efflux over the 

two years of study was 5.02±0.19 and 3.96±0.19 g m−2 d−1 in the drained and 

undrained plots respectively. Averaged monthly soil CO2 fluxes from the drained plots 
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and their undrained counterparts are summarised in Fig. 3.7a. Fluxes varied from 

month to month (P=0.0001, Table 3.2). The mean monthly soil CO2 fluxes varied 

from a sink (−0.34±0.08 g m−2 d−1) to a net source for atmospheric CO2 (8.91±0.17g 

m−2 d−1) in the drained plots and a sink (−0.51±0.11 g m−2 d−1) to a net source for 

atmospheric CO2 (7.37±0.29 g m−2 d−1) in their undrained counterparts. Soil 

respiration in the drained and undrained plots showed a strong seasonal trend, with 

higher fluxes during the summer and lower fluxes during the winter (Fig. 3.7a).  

 

Averaged seasonal soil CO2 fluxes are shown in Fig. 3.8a. Drainage significantly 

increased the fluxes in the summer of 2006 (P=0.01) and 2007 (P=0.01). Soil CO2 

emissions were significantly increased by drainage in the autumn of 2006 (P=0.02) 

and 2007 (P=0.001). The soil in the drained and undrained plots respired more in the 

autumn of 2006 than in 2007 (P=0.0001). Drainage increased soil respiration in the 

winter of 2006−07 (P=0.05) but not in 2007−08 (P=0.08). The winter seasons differed 

significantly in soil respiration (P=0.03). Soils in the drained and undrained plots 

emitted CO2 in the winter of 2006−2007 but were a net CO2 sink in the winter of 

2007−08. Drainage increased soil respiration in the spring of 2007 (P=0.05) and 2008 

(P=0.01). The drained and undrained plots respired more in the spring of 2007 than in 

2008 (P=0.02). Annual soil CO2 fluxes are shown in Table 3.3. Annual fluxes were 

greater in 2006−07 than 2007−08. Over the two years of study, the drained and 

undrained plots released 18.41±0.71 and 14.53±0.62 t CO2 ha−1 yr−1 to the 

atmosphere. 
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Table 3.3 Annual soil fluxes (t CO2 ha−1 yr−1) for all treatments. The number in the 
brackets indicates the annual C efflux (t C ha−1 yr−1). 
                                                               Sampling year 
Treatment 2006−2007a n 2007−2008 n 2006−2008  N 
Drained 22.16±0.75a 

(6.04±0.21) 
15 15.00±1.09a 

(4.09±0.30) 
11 18.41±0.71a 

(5.02±0.19) 
26 

Undrained 18.08±0.0.70b 

(4.93±0.19) 
 11.31±0.92b 

(3.08±0.25) 
11 14.53±0.62b 

(3.96±0.17) 
26 

Mounded 19.57±0.69a 
(5.34±0.19) 

15 13.16±1.02a 
(3.59±0.49) 

11 16.22±0.66a 
(4.42±0.18) 

26 

Unmounded 20.67±0.81a 
(5.64±0.22) 

15 13.14±1.02a 
(3.58±0.28) 

11 16.73±0.70a 
(4.56.±0.19) 

26 

Fertilised 20.96±0.72a 

(5.72±0.20) 
15 13.51±1.04a 

(3.69±0.28) 
11 17.06±0.68a 

(4.65±0.19) 
26 

Unfertilised 19.28±0.77b 

(5.26±0.21) 
15 12.79±1.00a 

(3.49±0.27 
11 15.88±0.67b 

(4.33±0.18) 
26 

The ‘±’indicate the standard error of the mean. Different letters in bold indicate 
significant difference in emissions (P<0.05) between the drained vs. undrained, 
mounded vs. mounded and fertilised vs. unfertilised treatment in each sampling year.  
 
Table 3.4: Summary of the general linear model of soil CO2 emissions in the mounded 
plots. The general linear model tested the significance of drainage, fertilisation and 
position (mounds, hollow, undisturbed ground) across sampling dates (plot nested 
within drainage and date entered as repeated measure).  
Parameter F P  
Drainage 1.41 0.301 
Plot 11.85 <0.0001 

Fertilisation 21.14 <0.0001 

Position 52.04 <0.0001 

Drainage×Fertilisation 0.01 0.99 
Drainage×Position 1.06 0.35 
Fertilisation×Position 6.93 <0.001 

Drainage×Fertilisation×Position 1.43 0.24 
Sampling date 37.24 <0.0001 

Drainage×Sampling date 2.27 <0.0001 

Position×Sampling date 3.78 <0.0001 

Fertilisation×Sampling date 0.81 0.73 
Drainage×Position×Sampling date 1.07 0.36 
Drainage×Fertilisation×Sampling date 0.47 0.99 
Fertilisation×Position× Sampling date 0.63 0.98 
Drainage×Fertilisation×Position×Sampling date 0.86 0.74 
P values in bold are statistically significant (P< 0.05). 
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Figure 3.6. Averaged daily CO2 emissions: a) drained and undrained plots, b) 
mounded and unmounded subplots and c) fertilised and unfertilised subplots. The 
vertical bars indicate standard errors of mean. Different letters in bold indicate 
significant difference in emissions (P<0.05) between the drained vs. undrained, 
mounded vs. unmounded and fertilised vs. unfertilised treatment (n=15 and 11 for 
2006−07 and 2007−08) 
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Figure 3.7. Averaged monthly soil CO2 emissions in; a) the drained and undrained, b) 
mounded and unmounded and c) fertilised and unfertilised treatment. The vertical 
bars indicate standard errors of mean (n=26). 
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Figure 3.8. Averaged seasonal soil CO2 emissions (sum=summer, aut=autumn, 
win=winter and spr=spring) from summer 2006 to spring 2007, a) drained and 
undrained; b) mounded and unmounded and c) fertilised and unfertilised treatment. 
The vertical bars represent standard error of means. Different letters in bold indicate 
significant differences in fluxes (P<0.05) between the drained vs. undrained, mounded 
vs. unmounded and fertilised vs. unfertilised treatment in each season.  
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subplot respectively. Soil respiration in the mounded and unmounded treatment varied 

from month to month (P=0.0001, Table 3.2). The mean monthly fluxes varied from a 

sink (−0.40±0.06 g m−2 d−1) to a net source for atmospheric CO2 (8.24±0.25 g m−2 d−1) 

in the mounded subplots and from a sink (−0.47±0.07 g m−2 d−1) to a net source of 

atmospheric CO2 (7.95±0.47g m−2 d−1 g m−2 d−1) in the unmounded treatment (Figure 

3.7b). Soil respiration in the mounded and unmounded subplots showed a strong 

seasonal trend, with higher fluxes during the summer and lower fluxes during the 

winter (Fig. 3.7b). There were no significant differences in fluxes between the 

mounded and unmounded treatment in any season (Fig. 3.8b). However, the mounded 

and mounded subplots were net sinks for atmospheric CO2 in the winter of 2007−08. 

Annual soil CO2 fluxes are shown in Table 3.3. Over the two years of study, the 

mounded and unmounded subplots released 16.22±0.66 and 16.73±0.70 t CO2 ha−1 

yr−1 to the atmosphere. 

 

Soil respiration measured in the mounded subplots was significantly affected by the 

position of chambers (P=0.0001) and fertilisation (P=0.0001, Table 3.4). There was a 

significant interaction between fertilisation and the position of chambers (P=0.001). 

Soil respiration differed significantly between the hollows, mounds and undisturbed 

ground in 2006−07 (P=0.0001) but not in 2007−08 (P=0.3). The average soil 

respiration in the hollows, mounds and undisturbed soil was 3.49±0.26, 4.23±0.32 and 

6.25±0.57 g m−2 d−1 in 2006−07 and 3.17±0.37, 3.36±0.38 and 3.67±0.29 g m−2 d−1 in 

2007−08. Soil respiration in the hollows, mounds and undisturbed ground showed a 

strong seasonal trend, with higher fluxes during the summer and lower fluxes during 

the winter (Fig 3.9). Over the two years of study, the annual CO2 fluxes in the 

mounded subplots were on average 12.25±0.74, 14.09±0.72 and 18.83±0.63 t CO2 

ha−1 yr−1 in the hollows, mounds and undisturbed ground (Table 3.5). 
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Table 3.5. Annual fluxes (t CO2 ha−1 yr−1) for hollows, mounds and undisturbed 
ground (UDG). Values are mean±standard error. The number in the brackets indicates 
the annual C efflux (t C ha−1 yr−1). 
Sampling year  Subsite 

2006−2007 Hollows n Mounds  n UDG N 
CO2 (t ha-1yr-1) 
[C] (t ha−1 yr−1) 

12.76±0.83 
3.48±0.23 

15 15.43±0.72 
4.20±0.20 

11 22.81±0.62 
6.22±0.17 

26 

2007−2008       
CO2 (t ha-1yr-1) 
[C] (t ha−1 yr−1) 

11.55±1.34 
3.15±0.37 

15 12.26±1.38 
3.34±0.38 

11 13.40±1.06 
3.65±0.29 

26 

2006−2008       
CO2 (t ha-1yr-1) 
[C] (t ha−1 yr−1) 

12.25±0.74 
3.34±0.20 

15 14.09±0.72 
3.84±0.20 

11 18.83±0.63 
5.13±0.17 

26 

 

Figure 3.9 Seasonal variations in soil CO2 efflux rates in undisturbed ground (UDG), 
mounds and hollows. The vertical bars indicate the standard error of the mean (n=26). 
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sink (−0.44±0.07 g m−2 d−1) to a net source of atmospheric CO2 (7.98±0.37 g m−2 d−1) 

in the fertilised subplots and 0.42±0.11 to 8.15±0.33 g m−2 d−1 in the unfertilised 

subplots. Soil respiration in the fertilised and unfertilised subplots showed a strong 

seasonal trend, with higher fluxes during the summer and lower fluxes during the 

winter (Fig 3.7c). The fertilised and unfertilised subplots were net sinks for 

atmospheric CO2 in the winter of 2007−08. Annual soil CO2 fluxes were higher in 

2006−07 than in 2007−08 (Table 3.3). Over the two years of study, the fertilised and 

unfertilised subplots released 17.06±0.68 and 15.88±0.67 t CO ha−1 yr−1 to the 

atmosphere. 

 

3.3.3  Relationships between soil CO2 efflux and environmental variables 

 

Exponential regressions (Boone et al. 1998; Burton et al. 1998; Buchmann 2000; Ball 

et al. 2007; Han et al 2007), linear regressions (Raich and Schlesinger 1992; Ben-

Asher et al. 1994) and Arrhenius equations (Lloyd and Taylor 1994; Thierron and 

Laudelout 1996) have been used to describe the relationship between soil temperature 

and soil respiration. In present study site, exponential relationships between soil 

respiration and soil temperature exhibited year to year variation. Soil temperature at 

all depths explained 53 to 66% of the variability in soil respiration observed in all 

treatments in 2006−07 (Table 3.6). A strong exponential relationship between soil 

respiration and soil temperature (R2 between 0.77 and 0.88) was observed in 2007−08 

(Table 3.6). However, when the averaged monthly data for the whole measurement  

period (2006−2008) were pooled together, linear regression equations described the 

relationship between soil respiration and soil temperature better than the exponential 

function, R2 between 0.79 and 0.84, Fig. 3.10 for the linear regressions, compared to 

R2 between 0.67 and 0.75 for the exponential equation Table 3.7).  

 

Soil respiration in this site was significantly related to soil moisture content (linear 

relationship R2 between 0.21 and 0.75) when soil moisture was treated as an 

independent variable. Similarly, a linear relationship was also observed between soil 

respiration and soil water table depth, when the latter was treated as an independent 

variable (R2 between 0.35 and 0.57). Correlation analysis (not shown) showed a 

significant correlation between all measured environmental variables in this site. 
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However, in view of the fact that environmental variables were not independent of 

each other, a forward stepwise multiple regression analysis was employed. This 

showed that soil temperature (T1) (Fig. 3.10a) and soil moisture content (Fig. 3.11) 

were the most important variables in the drained and undrained plots. Soil temperature 

alone explained 80 and 84% of the variability observed in soil respiration in the 

drained and undrained plots. The variance increased to 84 and 88% when soil 

moisture was included in the model. The relationship between soil respiration and the 

soil water table in the drained and undrained plots appeared to be purely a result of the 

latter’s relationship with soil temperature and soil moisture. A forward stepwise 

multiple regression analysis showed that soil temperature (T1) was the most important 

factor controlling soil respiration in the fertilised subplots accounting for 82% of the 

variance (Fig. 3.10b). In the unfertilised subplots, T1, T5 and T10 were the most 

important factors driving soil respiration; T1 alone explained 83% (Fig.3.10b) of the 

variance which increased to 85% and 88% when T5 and T10 were included. Soil 

temperature (T10) was the most important factor controlling soil respiration in the 

mounded and unmounded subplots, accounting for 82 and 83% of the variance (Fig 

3.12). The relation between soil respiration and soil moisture and soil water table in 

this site was purely a result of their relationship with soil temperature. 

 

The exponential equation was used to calculate Q10 values for each sampling year 

(Table 3.6). The Q10 values calculated across treatments were lower (1.8−2.3) in 

2006−07 than in 2007−08 (2.3−6.5). On average the Q10 values varied between 2.4 

and 3.4 across treatments (Table 3.7). 
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Figure 3.10. Linear relationship between soil CO2 efflux and soil temperature (T1) 
(P=0.0001) for a) drained and undrained, b) fertilised and unfertilised (n=21). Data 
are treatment means for each month.  
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Figure 3.11. Linear relationship (P=0.0001) between soil CO2 efflux and soil moisture 
content in the drained and undrained plots (n=21). Data are treatment means for each 
month from July 2006 to May 2008.  
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Figure 3.12. Linear relationship between soil CO2 efflux and soil temperature (T10) 
(P=0.0001) in the mounded and unmounded subplots (n=21). Data are treatment 
means for each month from July 2006 to May 2008.  
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3.4 DISCUSSION 

 

3.4.1 Effects of site preparation on environmental factors 

 

In general, drainage lowered the soil water table, improved aeration and altered the soil 

thermal properties and energy fluxes near the soil surface. In this study, soil temperature 

was increased by drainage. The soil temperature was higher in the drained plots than the 

undrained plots because well-drained soils warm faster than wet soils. In absolute values, 

the difference in soil temperature between the drained plots and their undrained 

counterparts varied between 0.2 and 1.2°C at all depths. These results are consistent with 

results of drainage studies conducted in peatland sites which also found that peat 

temperature increased after drainage (e.g., Grootjans et al. 1985; Lieffers and Rothwell 

1987; Lieffers 1988; Macdonald and Lieffers 1990; Van Cleve et al. 1990; Prévost et al. 

1997). For example, Prévost et al. (1997) found that seasonal maximum temperature at 10 

cm depth increased by 3.5°C after drainage (5 m away from ditches) and by 1.5° C (at 

distances greater than 5 m). Mounding increased soil temperature at 1 and 5 cm depth, 

probably because mounding exposed the mineral soil on top of mounds which absorbed 

more heat than the soil surface covered with litter or vegetation. In absolute values, the 

difference in soil temperature between mounded and unmounded subplots was 0.2 and 

1.3°C. This finding is consistent with results of mounding experiments conducted in 

organic soils which found that soil temperature was higher on the top of mounds that on 

undisturbed ground (e.g., Sutton 1993; DeLong et al. 1997; Saari et al. 2004). 

 

Soil moisture content at the present study site was decreased by drainage between May 

and October. This may have occurred because drainage improves aeration and increases 

soil temperature and evapotranspiration, resulting in a drier soil surface. Soil moisture 

was also decreased by mounding between May and October and this was probably caused 

by improved soil aeration and increased soil temperature which probably dried the soil to 

a depth of at least 5 cm, where soil moisture content was measured particularly at the top 

and around mounds. Saari et al (2004) also observed low moisture content on the top of 

mounds than on undisturbed soil.  
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The soil water table depth was significantly lowered by drainage, similar to the effect 

observed in other peatland sites following drainage (e.g., Laine et al. 1995b; Martikainen 

et al. 1995; Regina et al. 1996; Minkkinen and Laine 1998; Nykänen et al. 1998). The 

average soil water table was 23.0 cm below the soil surface in the drained plots and 13.8 

cm in their undrained counterparts. The soil water table depth was not affected by 

mounding or fertilisation.  

 

3.4.2 Effect of drainage on soil CO2 efflux  

 

Afforestation of peaty gley soils in the UK usually requires lowering the water table by 

drainage to increase the survival and growth of planted trees. The increase in tree growth 

may result from more oxygenated conditions in the root zone and increase in the rate of 

mineralisation of organic matter which increases the availability of soil nutrients (Von 

Arnold et al. 2005; Minkkinen et al. 2008). In addition to increasing forest growth, 

drainage has been shown to increased soil respiration from organic soils in the boreal and 

continental peatlands (e.g., Martikainen et al.1995; Silvola et al. 1996a; Minkkinen et al. 

2008). In the present study, drainage increased soil respiration by 22.6 to 32.6%. 

Komulainen et al. (1999) measured soil respiration in southern Finland and found that 

fluxes increased soon after drainage depending on the effectiveness of ditches and site 

fertility. The result of the present study suggests that ditches were effective in lowering 

the soil water table depth. Drainage may increase soil respiration by improving aeration 

and increasing soil temperature as well as substrate availability, all of which can control 

the rate at which soil organic matter is decomposed (Trettin et al. 1996). Simulation 

studies lowering the soil water table conducted under laboratory conditions found that 

low water table depth treatments released 2 to 5 times more CO2 than saturated peatland 

soils (Silvola et al. 1985; Moore and Knowles 1989; Moore and Dalva 1993; Freeman et 

al. 1993; Funk et al. 1994). Several field reports also demonstrated that increased oxygen 

availability after drainage may favour decomposition and turn peat soils from CO2 sink to 

source (e.g., Glenn et al. 1993; Martikainen et al. 1995; Nykänen et al. 1995; Silvola et al. 

1996a; Minkkinen et al. 2008). For example, Silvola et al. (1996a) measured soil 

respiration in Finland and found that lowering the soil water table depth by 5 to 9 cm did 
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not affect soil respiration, whereas in sites where drainage lowered the soil water table by 

12 to 40 cm, CO2 emissions doubled. 

 

Soil respiration processes (heterotrophic and autotrophic) are controlled by soil 

temperature, soil moisture content and oxygen availability (Raich and Schlesinger 1992; 

Peterjohn et al. 1994; Kätterer et al. 1998; Saiz et al. 2006) which were improved by 

drainage in this study. Heterotrophic respiration results from metabolic activity of a wide 

range of soil microorganisms that decompose organic matter (Christensen et al. 1996). 

Apart from environmental factors, heterotrophic respiration may be affected by the 

population of soil microorganisms and the quantity and quality of soil organic matter. In 

the present study, drainage improved aeration and increased soil temperature, and may 

have favoured the soil microbial population and activity and enhanced decomposition and 

soil respiration. Furthermore, increased oxygen availability and soil temperature after 

drainage may have favoured plant root growth of Calluna vulgaris, Festuca ovina, etc., 

vegetation in this study (e.g., Silvola et al. 1996b; Verville et al. 1998; Finer and Laine 

1998; Hanson et al. 2000). Finer and Laine (1998) reported that root production increased 

with decreasing soil water table in a Scots pine forest in Finland, indicating that the 

production of fine roots may play an important role in the cycling of C in well drained 

organic soils. In addition to direct contribution to total soil respiration, plant roots may 

produce highly decomposable fine roots and root exudates when exposed to aerobic 

conditions (e.g., Thomas et al. 1996) which, probably also occurred in the present study 

site after drainage. The availability of decomposable fine roots and organic exudates has 

been shown to favour the growth and activity of soil microorganisms as well as organic 

matter decomposition (Lohila et al. 2003; Kuzyakov and Cheng 2004). 

 

Soil respiration in the drained and undrained plots showed a strong seasonal trend, with 

higher fluxes during the summer and lower fluxes during the winter. High soil CO2 fluxes 

observed in the summer to early autumn (June to September) was perhaps due to 

favourable soil temperatures (12−15°C) and soil moisture (0.66−0.78 m3 m−3) which 

increased both heterotrophic and autotrophic respiration (e.g., Weber 1985). This result is 

consistent with results of studies conducted in various ecosystems and soil types (Edward 
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and Sollins 1973; Schlentner and Van Cleve 1985; Jensen et al. 1996; Silvola et 1996b; 

Zogg et al. 1996; Mallik and Hu 1997; Davidson et al. 1998; Lin et al. 1999; Law et al. 

1999; Xu and Qi 2001; Wan and Luo 2003). For example, Edwards and Sollins (1973) 

found that the average soil CO2 efflux in a deciduous forest was lower in the spring and 

higher in the summer. Jensen et al. (1996) measured soil respiration in arable land and 

reported maximum fluxes at soil temperatures between 16 and 18˚C. Schlentner and Van 

Cleve (1985) also measured soil respiration in a mature forest in interior Alaska and 

observed that optimum fluxes occurred when the soil temperature was 17°C. There was 

consumption of CO2 in both the drained and undrained plots in the winter of 2007−08 

when the soil was water saturated, which may have reduced the availability of oxygen for 

heterotrophic and autotrophic respiration (Rey et al. 2002). Soil respiration is driven by 

temperature (e.g., Davidson et al. 1998; Buchmann 2000; Zerva and Mencuccini 2005a), 

suggesting that low temperatures (−0 to 3˚C) observed in the winter of 2007−08 could 

have contributed to CO2 consumption. In general, water saturated soil consume or emit 

insignificant amount of CO2, but emit C and CH4 (Alm et al. 1997; Carrol and Crill et al. 

1997; Nykänen et al. 1998).  

 

Soil respiration showed a strong year to year variation. Soil respiration was greater in 

2006−07 than in 2007−08. This may have occurred because 2006−07 was warmer than 

2007−08. This finding agrees with results of previous studies conducted in various 

ecosystems world-wide (e.g., Frank et al. 2002; Irvine and Law 2002; Melillo et al. 2002; 

Epron et al. 2004; King et al. 2004; Von Arnold et al. 2005; Ball et al. 2007). For 

example, Von Arnold et al. (2005) studied soil respiration in an undrained mire site in 

Sweden and reported annual fluxes of 0.8 × 104 and 1.2 × 104 kg CO2 ha−1 yr−1 in year 1 

and 2, respectively. Ball et al. (2007) measured 7.8 and 10.1 t CO2 ha−1 yr−1 in a 20 year 

old conifer stand and 22.3 and 13.6 t CO2 ha−1 yr−1 in a 30 year old conifer stand at 

Harwood Forest in 2001 and 2002, respectively.  

 

Annual soil CO2 emissions observed in the drained and undrained plots were higher than 

values reported for organic soils drained for pasture (Nykänen et al 1995; Langveld et al. 

1997). For example Nykänen et al. (1995) measured soil respiration in a fen drained for 



 77 

pasture in Finland and reported fluxes of 1500 kg CO2 ha−1 yr−1. Langeveld et al. (1997) 

studied soil CO2 fluxes in peat soils drained for pasture in The Netherlands and reported 

that soil respiration released 11×103 kg CO2 ha−1 yr−1. Low CO2 fluxes from grazed 

grasslands may be due to grazing animals, which reduces below-ground biomass and also 

cause soil compaction. Soil compaction may decrease the soil macroporosity and, thus 

reduce air diffusion and water infiltration rates (Pritchett 1979). Changes in these soil 

properties may increase the soil water content and consequently create a more anaerobic 

soil environment and reduce soil respiration (Zerva and Mencuccini 2005a). The annual 

fluxes in the drained and undrained plots were lower than 6.9−7.9×103 kg CO2−C ha−1 

yr−1 reported for drained organic soils used for arable agriculture in the boreal region 

Maljanen et al. (2004). 

 

3.4.3 Effect of mounding on soil CO2 efflux 

 

Mounding is a ground preparation method commonly used for tree planting in peaty gley 

soils in upland Britain. Mounding buries the litter and the organic layers beneath the 

mineral soil on the top of mounds (Saari et al. 2004). Increased soil temperature during 

day-time, more pronounced wet and dry cycles as well as the mixing of the organic 

matter and mineral soil are considered the most important drivers of biological processes 

in cultivated organic soils (Johansson 1994). Soil respiration is expected to increase on 

the top of mounds because increased soil temperature and oxygen availability have the 

potential to increase soil microbial activity and organic matter decomposition rates (e.g., 

Doran 1980; Kessavalou et al. 1998; Rochette and Angers 1999). 

 

Soil respiration in this study was not affected by mounding. This result contradict results 

of previous studies which reported that site preparation carried out prior to afforestation 

enhances organic matter decomposition rates and soil respiration (e.g., Johansson 1994; 

McClellan et al. 1990; Millikin and Bowden. 1996; Lundmark-Thelin and Johansson 

1997; Mallik and Hu 1997; Smolander et al. 1998) because mixing the organic and the 

mineral soil layers increases soil temperature and oxygen availability and may stimulate 

soil microbial activity (e.g., Armentano and Menges 1986; Winkler et al. 1996; Davidson 
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et al. 1998). Previous studies compared soil CO2 released from mounds and undisturbed 

soil without considering emissions from hollows where the soil used to make mounds 

was excavated from. 

 

In the present study, soil respiration was measured from three different subsites in the 

mounded subplots (e.g., hollows, mounds and undisturbed ground). Mounding created 

three subsites with a different microclimate and organic matter distribution, hence the 

importance of evaluating CO2 released from the hollows. In 2006−07, the averaged CO2 

fluxes were higher in the undisturbed ground than on the top of mounds and inside 

hollows. Mounding improved aeration and increased soil temperature on the top of 

mounds all of which may enhance decomposition, it is therefore possible that the soil 

organic layers and the mineral soil on the top of mounds were not well mixed in 2006−07 

and restricted microbial decomposition (e.g., Maier and Kress 2000; Pangle and Seilier 

2002). Gas diffusion is important in determining soil aeration in soils which may 

influence soil microbial activity and organic matter decomposition. It is possible that the 

mineral soil on the top of mounds impended oxygen diffusion and depressed microbial 

activity and thereby slowing the CO2 evolution in 2006−07 (e.g., Skopp et al. 1990). Field 

observations showed that the vegetation previously growing beneath mounds was 

suffocated by mounds and root respiration may have ceased, reducing soil respiration on 

the top of mounds. Plant root activities may influence soil respiration (Bowden et al. 

1993; Raich and Tufekgcioglu 2000) and have been shown to contribute about 50% to 

total soil respiration (Ewel et al. 1987b; Irvine and Law 2002). 

 

Hollows were periodically covered with water, particularly during the winter to early 

spring and this may have hindered organic matter decomposition. This agrees with results 

of Ball et al. (2007) who reported that pools of water in a clearfelled forest and inside 

drainage ditches reduced soil respiration at Harwood forest. Plants roots inside hollows 

were removed with the soil excavated to form mounds and this may have decreased 

autotrophic respiration. There was no significant difference in soil respiration between 

the hollows, mounds and undisturbed soil in 2007−08. The increase in fluxes on the top 

of mounds in 2007−08 may indicate that the soil organic and mineral soil layers were 
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well mixed and increased organic matter decomposition and soil respiration. The mixing 

of the soil layers may have created an environment favourable for soil microbial activity 

and decomposition in 2007−08. This agrees with results of earlier studies which reported 

that site preparation increased soil respiration (Millikin and Bowden 1996; Mallik and Hu 

1997; Lytle and Cronan 1998; Londo et al. 1999; Pumpanen et al. 2004b). For example, 

Pumpanen et al. (2004b) reported that soil respiration on the top of mounds increased 

slightly after mounding compared to the soil where residues were left in a clearfelled 

forest in Finland. They suggested that the partial mixing of the organic matter with the 

mineral soil improved aeration and increased soil temperature and may have favoured 

soil microbial activity and decomposition. The water inside hollows evaporated between 

the spring and autumn of 2007 and may have caused aerobic conditions favourable for 

decomposition in 2007−08. Furthermore, higher soil CO2 fluxes were observed inside the 

hollows and on the top mounds in the summer to early autumn, particularly after sporadic 

rainfall events. These high fluxes may be an indication that the soil temperature and 

moisture condition inside the hollows and on the top of mounds was favourable for 

organic matter decomposition (e.g., Winkler et al. 1996; Davidson et al. 1998). There was 

consumption of CO2 in the mounded and unmounded subplots in the winter of 2007−08, 

probably because the soil was water saturated and temperatures were low. 

 

3.4.4 Effect of fertilisation on soil CO2 efflux 

 

Previous studies demonstrated that atmospheric N deposition or fertiliser application 

increase biomass production in temperate and boreal forest ecosystems (Aber et al. 1998; 

Albaugh et al. 1998; Canary et al. 2000). The application of N to infertile boreal and 

temperate forest ecosystems has been shown to increase tree roots, foliage and wood 

biomass (Canary et al. 2000; Albaugh et al. 1998). The effect of N fertilisation on below-

ground processes is not well understood. Fertilisation increase nutrient availability and 

may enhance tree growth and above-ground litter, but may also decrease root biomass 

because trees allocate more C to wood production than to below-ground processes in 

response to increased fertility (e.g., Eriksson et al. 1996; Kurz et al. 1996; Gunderson et 

al. 1998; Raich and Tufekgcioglu 2000; Helmisaari et al. 2007). Several studies 
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demonstrated that N fertilisation has different effects on C losses from tree roots 

(rhizodeposition). For example, Uselman et al. (2000) reported that N increases 

rhizodeposition. In contrast, Bowden et al. (2004) demonstrated that N fertilisation 

decreases rhizodeposition in forest soils. The effect of N fertilisation on rhizodeposition 

depends on whether root biomass is increased or decreased. Nitrogen fertilisation and 

atmospheric N deposition have also been shown to have different effects on soil 

respiration. Several studies (e.g., Hobbie, 2000; Pregitzer et al. 2000; Vestgarden, 2001; 

Burton et al. 2002; Bowden et al. 2004; Minkkinen et al. 2008) demonstrated that N 

increases soil respiration, and suggested that the stimulatory effect of N on organic matter 

decomposition may decrease C storage in forest soils (e.g., Aber et al. 1993; Cao and 

Woodward 1998). In contrast, other reports demonstrated that N fertilisation and 

atmospheric N deposition decreases organic matter decomposition and, thus suppresses 

soil respiration and may increase organic matter storage in forest ecosystems (Magill and 

Aber 1998; Bowden et al. 2000; Burton et al. 2002; Franklin et al. 2003; Foereid et al. 

2004; Jandl et al. 2007; Pregister et al. 2008). Other studies found no effect of N 

fertilisation on organic matter decomposition and soil respiration (Rochette and 

Gregorich 1998; Hobbie and Vitousek 2000). 

 

Fertilisation increased soil respiration by 5.6 to 8.7%. This finding agrees with results of 

previous studies which found that organic matter decomposition and soil respiration 

increased following N fertilisation (Hobbie 2000; Pregitzer et al. 2000; Burton et al. 

2002; Uselman et al. 2000; Vestgarden 2001; Bowden et al. 2004; Minkkinen et al. 

2008). Minkkinen et al. (2008) found that fertilisation increased pH in peatland soils. 

They suggested that the increase in soil pH may improve the litter nutrient content and 

enhance decomposition and soil respiration. However, soil pH in this study was not 

affected by fertilisation. Fertilisation increased standing above-ground plant biomass by 

20% in the first year of this study. Although root biomass was not evaluated, it is possible 

that it also increased with standing above-ground plant biomass in the first year following 

fertilisation. Root respiration in the present study site is expected to increase following 

fertilisation because grasses, with virtually no C allocation to wood production like trees 

do, may have more photosynthate available to allocate to belowground than trees (Raich 
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and Tufekgcioglu 2000). In contrast, several studies found that N fertilisation decrease 

soil respiration in forest soils (Haynes and Gower 1995; Knapp et al. 1998; Magill and 

Aber 1998; Maier and Kress 2000; Cardon et al. 200; Ågren et al. 2001). The mechanism 

which decreases organic matter decomposition in fertilised forests soils is not well 

understood. Foereid et al. (2004) and Jandl et al (2007) suggested that N may decrease 

decomposition rates of old organic matter by suppressing ligninolytic enzymes of soil 

microorganisms and by chemical stabilisation. A review of literature by Fog (1988) 

concluded that (i) N changes the composition of the microbial community through 

competition; (ii) ammonia suppresses the production of enzymes required for degradation 

of lignin and other recalcitrant compounds; and (iii) ammonia and amino compounds 

react with organic matter to form recalcitrant material. 

 

There was no significant difference in soil respiration between the fertilised subplots and 

their unfertilised counterpart in 2007−08, although the fertilised subplots respired more 

than the unfertilised subplots. The leaching of NO3
− (e.g., Vitousek and Matson 1985; 

Smith et al. 1994), N uptake by plants (e.g., Vitousek and Matson 1985; Emmett et al. 

1991) and losses as gaseous N2O and N2 caused by nitrification and denitrification (e.g., 

Robertson et al. 1987; Brumme 1995; Sitaula et al. 1995) in 2006−07, probably depleted 

the pool of additional N for root growth and maintenance in 2007−08. Net CO2 uptake 

occurred in the fertilised and unfertilised subplots in the winter of 2007−08, probably due 

to observed water saturated soils and low temperatures.  

 

3.4.5 Soil CO2 emissions in relation to environmental variables 

 

Soil temperature explained the largest fraction of the variability in soil respiration rates 

observed across treatments in this site. This result agrees with results of previous studies 

(Davidson et al. 1998; Buchmann 2000; Maier and Kress 2000; Janssens and Pilegaard 

2003; Pangle and Seiler 2002; Zerva and Mencuccini 2005a; Han et al. 2007). Soil 

respiration in all treatments showed a strong seasonal trend, with higher fluxes during the 

summer and lower fluxes during the winter. Soil temperature is the driver of most 

biological processes in soils. In the case of soil respiration, increased soil temperature 
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may stimulate the soil microbial population and activity and accelerate organic matter 

decomposition. In addition, increasing soil temperature may favour autotrophic 

respiration by increasing plant photosynthesis and photosynthate translocation from 

above-ground plant parts (Han et al. 2007). Davidson et al. (1998) studied soil respiration 

in a temperate mixed hardwood forest in central Massachusetts, USA. They reported that 

soil temperature explained 80% of the variability observed in soil respiration. Zerva and 

Mencuccini (2005a) reported that soil temperature explained 79 to 90% of the variation in 

soil CO2 fluxes in a mature Sitka spruce forest at Harwood Forest. Buchmann (2000) 

used an exponential equation to describe the relationship between soil respiration and soil 

temperature in the Of layer in a Norway spruce stands in Germany and found that soil 

temperature explained 75 to 81% of the variance. Han et al (2007) also used an 

exponential regression equation to fit a relationship between soil respiration and soil 

temperature in a maize (Zea mays L.) field and found that soil temperature explained 80 

to 97% of the variance. 

 

Soil organic matter decomposition increases with temperature (Kirschbaum 2000) and 

labile C is sensitive to temperature variation than recalcitrant carbon (Thornley and 

Cannell 2001; Lenton and Huntingford 2003). Incubation studies conducted by Niklinska 

et al. (1999) have estimated that soil warming will increase decomposition rates and CO2 

emitted from soils in the boreal and tundra region. This is because soils in the boreal and 

tundra region have the largest stock of labile organic carbon, and are predicted to 

experience the greatest increase in temperature (Schlesinger and Andrews 2000). Field 

warming experiments have demonstrated that warming either failed to enhance soil 

respiration significantly or the increase was limited to a very short initial time period 

(Luo et al. 2001; Melillo et al. 2002; Wan and Luo 2003; Gu et al. 2004). This 

phenomenon has been attributed to rapid depletion of labile carbon pools which are more 

sensitive temperature. In contrast, incubation studies conducted by Townsend et al. 

(1997) demonstrated that recalcitrant soil organic carbon is as sensitive to temperature as 

labile soil organic carbon.  
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Q10 values varied between 2.4 and 3.4 over the two years of study. These values are 

within the range of 2.0 to 3.9 reported for temperate soils (Schleser 1982; Baldocchi et al. 

1986; Raich and Schlesinger 1992; Hanson et al. 1993; Howard and Howard 1993; 

Davidson et al. 1998; Kätterer et al. 1998; Buchmann 2000). Schleser (1982) suggested 

that the wide variation in Q10 values for soils depends on natural conditions such as 

fertility because organic matter decomposition rates are influenced by its physical-

chemical conditions and quality. Q10 values across treatments were lower in 2006−07 

than in 2007−08, probably because differences labile substrate availability (e.g., Winkler 

et al. 1996) and soil temperatures between the two sampling years. Winkler et al. (1996) 

reported Q10 values between 1.7 and 1.9 at temperatures between 4 and 28°C in the A 

horizon of forest soils. Zerva (2004) reported Q10 values between 1.9 and 2.0 in a 

clearfelled stand at Harwood forest. They attributed the low values to the absence of roots 

and autotrophic respiration. Boone et al. (1998) reported a Q10 value of 4.6 for root 

respiration and 3.5 for bulk soil respiration. Overall, the Q10 values in this site increased 

with soil depth and were consistently higher at 10 cm depth. This is consistent with 

results of previous studies which observed that that the Q10 value increased with soil 

depth (Russell and Voroney 1998; Zerva 2004).  

 

Soil moisture content explained 21 to 75% of the variability observed in soil respiration 

in this site when it was treated independently. Applying a forward stepwise multiple 

regression analysis showed that soil moisture content interacted with soil temperature to 

influence soil respiration in the drained and undrained plots. The relationship between 

soil respiration and soil temperature involves complex interaction of soil temperature and 

soil moisture. This result agrees with results of previous studies which demonstrated soil 

temperature interacts with soil moisture to influence soil respiration in many ecosystems 

(Howard and Howard 1993; Euskirchen et al. 2003; Maestre and Cortina 2003). High soil 

moisture levels may affect soil respiration by decreasing oxygen availability, while low 

moisture levels may stress soil microbial community and plant roots (Rey et al. 2002) and 

limit soil respiration (Maier and Kress 2000; Pangle and Seiler 2002). Soil moisture 

levels in the present study site were never extremely high or low to limit soil respiration. 
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3.5 CONCLUSION 

 

Our study shows that drainage and mounding carried out at afforestation on peaty gley 

soil can cause significant changes in environmental variables. Soil temperature was 

increased by drainage and mounding. The two practices also caused a decrease in soil 

moisture content. Drainage also lowered the water table depth. Peaty soils are major sinks 

for atmospheric CO2 but can be major sources following disturbances. Our study shows 

that drainage can increase CO2 effluxes from a peaty gley soil under temperate and 

maritime condition similarly to what has already been observed in deep peaty soils both 

in the UK and in the boreal region. Drainage increased soil CO2 effluxes by 22−32% 

because improved aeration and soil temperature may have resulted in optimal conditions 

for microbial and autotrophic respiration. Fertilisation increased soil CO2 effluxes by 

5−9%. The increase may be attributed to increased fertility following fertilisation which 

may have increased root biomass and microbial activity. Mounding had no effect on soil 

CO2 effluxes. Soil temperature was the main factor influencing soil CO2 efflux in the 

present study. 
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CHAPTER 4 

 
THE EFFECT OF SITE PREPARATION FOR AFFORESTATION 

ON METHANE FLUXES 
 

4.1 INTRODUCTION 

 

Methane is the second most important anthropogenic greenhouse gas after CO2 (Schimel 

and Gulledge 1998; van den Pol-van Dasselaar et al. 1999) and contributes 20% to 

anthropogenic global warming (Hütsch 2001; Dalal and Allen 2008). The atmospheric 

concentration of CH4 has tripled since pre-industrial times (Lelieveld et al. 1998; IPCC 

2001). The increase has been attributed to anthropogenic activities, such as fuel 

exploitation, biomass burning, rice production, animal husbandry of ruminants, sewage 

treatment plants and landfill use (Lelieveld et al. 1998). 

 

Soils are the most important biological sources and sinks for atmospheric CH4 (Le Mer 

and Roger 2001; Dutaur and Verchot 2007). Globally, most CH4 is produced by 

methanogenic bacteria during anaerobic decomposition processes in terrestrial wetlands 

(Nykänen et al. 1998; Yavitt and Williams 2000). Methane flux from soil to the 

atmosphere is the result of two microbial processes, methanogenesis (microbial 

production) and methanotrophy (microbial consumption) (Chan and Parkin 2001; Dutaur 

and Verchot 2007; Chen et al. 2009). Methane can also be produced in aerobic organic 

soils inside soil aggregates where anaerobic microsites occur (Dataur and Verchot 2007). 

 

Globally, an estimated 600 Tg CH4 are released to the atmosphere annually (Lelieveld et 

al. 1998; Smith 2005; Denman et al. 2007), with over 70% originating from biogenic 

sources, such as wetland soils, rice paddies and ruminants (Denman et al. 2007). In well-

drained upland soils, CH4 oxidation by methanotrophic microorganisms is the dominant 

process (Sundh et al. 1994; Roura-Carroll and Freeman 1999; Le Mer and Roger 2001). 

Methanotrophy can also occur in wetland soils in the anaerobic/aerobic interface of the 

soil before CH4 is emitted into the atmosphere (Ding et al. 2003; Dutaur and Verchot 
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2007). Well drained soils are estimated to provide a global sink of 22−100 Tg CH4 yr−1 

(Smith et al. 2000; Castaldi et al. 2006; Dutaur and Verchot 2007). 

 

Methane fluxes from soils are influenced by soil water table depth (Ding and Cai 2007), 

moisture content (Hargreaves and Fowler 1998), soil temperature (Saarnio et al. 1998), 

quantity and quality of organic substrate (Bossio et al. 1999), pH (MacDonald et al. 1997) 

and N levels (Singh et al. 1999). In wetlands, vascular plants play a key role in CH4 

dynamics by providing a major pathway for CH4 fluxes (Frenzel and Rudolph 1998; 

Bellisario et al. 1999; Joabsson and Christensen 2001), and possibly also in periodically 

flooded forests (e.g., Rusch and Rennenberg 1998; Terazawa et al. 2007). 

 

Land use changes such as cultivation of natural soils strongly reduce the strength of the 

soil CH4 sink (Smith et al. 2000; Castaldi et al. 2006). For example, Smith et al. (2000) 

estimated that the conversion of forests to agriculture may decrease the strength of soil 

CH4 sink by up to 60%. It is known that the addition of N fertilisers to soils can enhance 

CH4 emission (Ball et al. 1997; Bodelier and Laanbroek 2004). The effect of N on CH4 

fluxes has been attributed to NH4
+ which inhibits CH4 oxidising bacteria (King� and 

Schnell 1994; Gulledge et al. 1997��Bodelier et al. 2000). The effect of land use and soil 

N on atmospheric CH4 fluxes may persist for several years after the practices were 

carried out (Sitaula et al. 1995), especially in organic soils (Maljanen et al. 2001a). 

 

Large areas of boreal and temperate peatlands across the world have been drained and 

developed for forestry (Laine et al. 1995b). The productivity of forest stands established 

on peaty gley soils in the UK is increased through drainage, mounding and fertilisation. 

Substantial changes in the physical environment of peaty gley soils may occur after 

drainage and mounding including fluctuations in soil temperature (e.g., Davidson et al. 

1998; Londo et al. 1999) and soil moisture content (e.g., Cortina and Vallejo 1994). 

Potential reductions in CH4 emissions in peaty gley soils after drainage and mounding 

may arise from improved soil aeration (Hillman 1992) and increased peat temperature 

(Kirschbaum 1995). These and other changes (Zerva and Mencuccini 2005a) caused by 

drainage and mounding may increase aeration and reduce methanogenesis, thus enhance 
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CH4 oxidation in the aerobic part of the soil by methane oxidising microbes (Whalen and 

Reeburgh 1990; van den Pol-van Dasselaar et al. 1998). 

 

Saturated soils in the boreal and temperate region are important sources of CH4 (Nykänen 

et al. 1998, Huttunen et al. 2003a; Laine et al. 2007). Several studies demonstrated that 

drainage and afforestation reduces CH4 fluxes of peatland soils (Martikainen et al. 1995; 

Minkkinen et al. 2002; Von Arnold et al. 2005). Much research on CH4 emissions has 

been conducted in peatland soils in the boreal and continental climatic zones (e.g., Bubier 

et al. 1993; Huttunen et al. 2003a). Studies on the effect of site preparation carried out 

prior to afforestation on CH4 fluxes of peaty gleys soils under UK conditions are lacking. 

We hypothesised that site preparation practises would alter CH4 emissions from grassland 

on peaty gley soils. The objectives of the experiment described here were to (i) assess the 

effects of drainage; mounding and fertilisation on CH4 fluxes of peaty gley soil (ii) 

investigate the relationship between CH4 fluxes and environmental variables. 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 Study site description 

 

The study site was described in Chapter 1. Briefly, the study site was established on 

unimproved grassland between two second rotation Sitka spruce stands at Harwood 

Forest. Harwood Forest is located in northeast England (55° 10’ N, 2° 3’W). 

 

4.2.2 Experimental design and site preparation 

 

The description of the experiment is given in Chapter 2. The experiment has a full 

factorial split−plot design with six plots measuring 30 × 8 m established in May 2006. 

Three plots were selected at random and were mechanically drained by cutting open 

ditches placed 1.5 m from plot edges and excavated to a depth of 65 to 70 cm. Mounds 

were made by excavating the soil and turning it upside down adjacent to the dug pit 
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(depth 30−40 cm, width 40 cm), thus burying the litter layer and organic horizons of the 

original soil beneath the mineral layer of mounds. 

 

4.2.3 Measurement and analysis of soil CH4 emissions 

 

Methane flux was measured 31 times commencing on 17 June 2006 to 7 May 2008 as 

described in Chapter 3. Air samples to determine CH4 fluxes were collected after every 

fourth day in June 2006, weekly in July, bi-weekly between August and September 2006 

and finally at approximately monthly intervals from October 2006 to May 2008. Briefly, 

chambers were sealed with aluminium lids with foam rubbers on the underside and a 

sampling port fitted with a three-way stopcock. Air samples were collected from the 

headspace of chambers with 60 ml polypropylene syringes and transferred into gas-tight 

bags (Cali-5-bond, Calibrated Instruments Inc. USA). Each measurement cycle lasted for 

30−40 minutes and a linearity check showed that linear interpolation of two points taken 

at the start and at the end of the closure gives a good approximation of the true flux 

(Zerva and Mencuccini 2005, unpubl. data). Linear accumulation or depletion of CO2 was 

also checked every two months during the first year of the present study. For the vast 

majority of the checks conducted, linearity was ensured by linear regression coefficients 

higher than R2=0.99. Ambient air samples taken randomly at the height of chambers gave 

the initial concentration of CH4. The amount of CH4 in air samples was determined on a 

Hewlett Packard 5890 GC (Hewlett Packard Ltd, Stockport, Cheshire, UK) Gas 

Chromatograph (GC) equipped with a flame ionisation detector (FID) and a digital 

integrator. External standards of 1, 3 and 10 µmol mol−1 CH4 were used for calibration.  

 

4.2.4 Calculation of soil CH4 emissions 

 

Methane flux rates (mg m−2 d−1) were calculated by the following equation (Zerva 2004): 

 

F= d×V ×(Ct −C0) 
          A       t 
 

F = CH4 flux (mg m−2 d−1) 
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d (mg m−3) = gas density calculated assuming that a mole of gas (16 g CH4) occupy 22.4 

x 10−3 m3 of volume at 273 K. 

V = volume of the chamber (m3) 

A = area of the chamber (m2) 

Ct = concentration of CH4 (µmol mol−1) in the chamber after closure time  

C0 = initial concentration of CH4 (µm mol−1)  

t = closure time of chamber in minutes. 

 

4.2.5 Statistical analysis  

 

All data were checked for normality and log-transformed when required. Analyses were 

carried out both on averaged monthly fluxes as well as on seasonal and yearly totals. The 

general linear model (GLM) was used for analysis of variance. The general linear model 

tested for effects of three main factors (drainage, mounding and fertilisation) entered as 

fixed factors and plot entered as random factor nested within drainage. In case of monthly 

measurements, month was also entered as a repeated measures factor. The initial GLM 

included all possible second and third-order interactions. If interactions were not found to 

be significant, they were excluded and the model was run again without them to confirm 

the significance of the main factors. In case of significant interactions, the dataset was 

split and separate analyses were run for each combination. All analyses were run in 

Minitab 15 using the GLM procedure and the significance level was set at 0.05. Tukey’s 

pairwise comparison test was applied to determine significant differences between treated 

and untreated plots/subplots. For all analyses, values from individual chambers were 

averaged within each subplot. For the mounded subplots, weighted averaging was done 

by weighing each flux by the respective area covered by mound hills, mound hollows and 

undisturbed ground.  
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4.3 RESULTS 

 

4.3.1 Effect of site preparation on soil CH4 emissions 

 

Methane emissions were affected by all three practices (Table 4.1). Plots differed 

significantly in CH4 emissions over the two years of study (P=0.0001). There were no 

significant interactions between the practices, except when the factors month and plot 

were also included (Table 4.1). 

 
Table 4.1 Summary of the general linear model of soil CH4 emissions over the two years 
of study (2006−2008). 
Sources of variation F P 
Drainage 31.37 0.005 
Plot 7.53 <0.0001 

Mounding 22.30 <0.0001 

Fertilisation 29.98 <0.0001 

Month 14.29 <0.0001 

Drainage×Fertilisation 3.13 0.13 
Drainage×Mounding 3.69 0.13 
Mounding×fertilisation 0.07 0.80 
Drainage×Month 3.23 0.13 
Mounding×Month 3.23 <0.0001 

Fertilisation×Month 3.41 <0.0001 

Mounding×Plot 0.69 0.64 
Fertilisation×Plot 0.08 0.99 
Month×Plot 3.41 <0.0001 

Drainage×Fertilisation×Mounding 0.01 0.95 
Drainage×Mounding×Month 2.45 0.002 

Drainage×Fertilisation×Month 1.30 0.19 
Mounding×Fertilisation×Month 2.20 0.005 

Mounding×Fertilisation×Plot 5.74 <0.0001 

Mounding×Month×Plot 1.01 0.47 
Fertilisation×Month×Plot 0.90 0.69 
Drainage×Mounding×Fertilisation×Month 1.26 0.22 
P values in bold are statistically significant (P< 0.05). 
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Table 4.2. Average daily CH4 emissions (mg m−2 d−1) for all treatments (June 
2006−May 2007, and June 2007−May 2008). 
                                                       Sampling year 
Treatment 2006−07 n 2007−08 n 2006−08 N 
Drained 2.48±0.15a 20 0.89±0.12a 11 1.72±0.11a 31 
Undrained 5.80±0.36b 20 3.71±0.25b 11 4.80±0.23b 31 
Mounded 4.74±0.34a 20 2.81±0.26a 11 3.81±0.22a 31 
Unmounded 3.55±0.26b 20 1.79±0.19b 11 2.71±0.17b 31 
Fertilised 5.08±0.34a 20 2.53±0.26a 11 3.86±0.23a 31 
Unfertilised 3.20±0.24b 20 2.07±0.20a 11 2.66±0.16b 31 
Values in bold followed by different letters indicate a significant difference between 
the drained vs. undrained, mounded vs. unmounded and fertilised vs. unfertilised 
treatment (P<0.05). The “±” indicate the standard error of the mean. 
 
Table 4.3. Mean seasonal CH4 flux (mg m−2 d−1) by treatment and season. 
                                                 CH4 flux (mg m−2 d−1)  
Treatment June−Aug  Sept−Nov  Dec−Feb  March−May  

2006−2007 Summer n Autumn n Winter n Spring n 
Drained 2.88±0.42a 10 2.39±0.24a 5 1.71±0.15a 3 2.94±0.30a 3 
Undrained 7.34±0.85b 10 5.66±0.50b 5 3.60±0.69b 3 6.60±0.63b 3 
Mounded 5.39±0.75a 10 4.78±0.51a 5 3.37±0.70a 3 5.40±0.72a 3 
Unmounded 4.83±0.79a 10 3.27±0.42b 5 1.94±0.18b 3 4.14±0.36a 3 
Fertilised 6.93±0.77a 10 4.94±0.50a 5 3.19±0.70a 3 5.27±0.62a 3 
Unfertilised 3.29±0.64b 10 3.11±0.40b 5 2.12±0.20a 3 4.28±0.53a 3 
2007−2008         
Drained −0.08±0.48a 10 1.66±0.23a 5 1.16±0.15a 3 0.48±0.14a  
Undrained 2.98±0.85a 10 3.96±0.39b 5 4.45±0.53b 3 3.18±0.53b 3 
Mounded 1.82±1.01a 10 3.25±0.37a 5 3.17±0.52a 3 2.82±0.57a 3 
Unmounded 1.07±0.56a 10 2.37±0.37b 5 2.26±0.45a 3 0.84±0.17b 3 
Fertilised 1.36±0.77a 10 3.36±0.41a 5 3.05±0.50a 3 1.95±0.54a 3 
Unfertilised 1.53±0.87a 10 2.26±0.31b 5 2.75±0.47a 3 1.71±0.33a 3 
Values in bold followed by different letters indicate a significant difference between 
the drained vs. undrained, mounded vs. unmounded and fertilised vs. unfertilised 
treatment (P<0.05). The “±” indicate standard error of the mean. 
 

4.3.2 Effects of drainage on soil CH4 emissions 

 

Methane emissions in the drained plots were significantly lower than in the undrained 

plots (P=0.01, Table 4.1). The average soil CH4 flux over the whole study period was 

1.72±0.11 and 4.80±0.23 mg m−2 d−1 in the drained and undrained plots, respectively 

(Table 4.2). Drainage decreased CH4 emissions in 2006−07 and in 2007−08 (all 

P=0.01). The two years of study differed significantly in CH4 fluxes (P=0.0001), with 

2006−07 having more emissions than 2007−08. Averaged monthly emissions are 

shown in Fig. 4.1a. The month to month variability in CH4 emissions was highly 
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significant (P=0.0001, Table 4.1). Average monthly CH4 emissions varied from a net 

sink (−0.31±0.25 mg m−2 d−1) to a net source (5.17±0.52 mg m−2 d−1) in the drained 

plots, whereas in the undrained plots fluxes varied from 1.66±0.50 to 11.06±1.21 mg 

m−2 d−1. Methane emissions in the drained and undrained plots showed a seasonal 

trend (Fig. 4.1a). Methane fluxes were significantly decreased by drainage in the 

summer of 2006 (P=0.04) but not in 2007(P=0.5, Table 4.3). The two summers 

differed significantly in fluxes (P=0.0001) with more fluxes in the summer of 

2006−07 than in 2007−08. There was consumption of CH4 in the drained plots during 

the summer of 2007−08. Drainage decreased CH4 fluxes in the autumn of 2006 

(P=0.03) and 2007 (P=0.01). More CH4 was emitted in the autumn of 2006 than in 

2007 (P=0.0001). Methane emitted from drained plots was significantly lower than in 

the undrained plots in the winter of 2006−07 and 2007−08 (all P=0.01). Drainage 

decreased CH4 fluxes in the spring of 2007 (P=0.001) and 2008 (P=0.01). The two 

spring seasons differed significantly in fluxes (P=0.0001) with more CH4 emitted in 

the spring of 2007 than in 2008. Annual CH4 emissions are summarised in Fig. 4.2. 

Annual CH4 fluxes in the drained plots varied from 3.23±0.43 to 9.06±0.55 kg ha−1 

yr−1 and were on average 6.27±0.39 kg ha−1 yr−1. Annual CH4 fluxes in the undrained 

plots varied from 13.53±0.92 to 21.18±1.38 kg ha−1 yr−1 and were on average 

17.52±0.84 kg ha−1 yr−1. 
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Fig. 4.1 Averaged monthly CH4 fluxes in (a) the drained vs. undrained (b) mounded 
vs. unmounded and (c) fertilised vs. unfertilised treatment (n=31). Dots represent 
means of all chambers at each month and the vertical bars represent standard error of 
the mean. 
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Figure 4.2 Annual CH4 fluxes for all treatments by sampling year. The vertical bars 
represent standard error of mean. Different letters in bold indicate a significant 
difference (P<0.05) between the drained vs. undrained, mounded vs. unmounded and 
fertilised vs. unfertilised in each sampling year (n=20, 11 and 31 for 2006−07, 
2007−08 and 2006−08, respectively). 
 

4.3.3 Effects of mounding on CH4 fluxes 

 

Over the two years of study, CH4 emissions were significantly affected by mounding. 

Mounding significantly increased CH4 fluxes (P=0.0001, Table 4.1). The average soil 

CH4 flux over the two years of study was 3.81±0.22 and 2.71±0.17 mg m−2 d−1, in the 

mounded and unmounded treatment (Table 4.2). Mounding increased soil CH4 fluxes 

in 2006−07 (P=0.0001) and 2007−08 (P=0.0001). More CH4 was emitted in 2006−07 

than in 2007−08 (P=0.0001). Averaged monthly soil CH4 fluxes are shown in Fig. 

4.1b. Soil CH4 fluxes varied from month to month (P=0.0001). Monthly soil CH4 

fluxes ranged from 0.64±0.56 to 8.95±1.11 and 0.47±0.18 to 7.28±1.40 mg m−2 d−1 in 

the mounded and unmounded treatment subplots. 

 
Methane fluxes in the mounded and unmounded treatment showed a seasonal trend 

(Fig. 4.1b). Mounding had no significant effect on CH4 emissions in the summer of 

2006 and 2007 (all P=0.3). However, more CH4 was emitted in the summer of 2006 

than in 2007 (P=0.001, Table 4.3). Mounding increased CH4 fluxes in the autumn of 

2006 (P=0.0001) and 2007 (P=0.03), respectively. More CH4 was emitted in the 

autumn of 2006 than in 2007 (P=0.0001). Methane emissions were significantly 

increased by mounding in the winter of 2006−07 (P=0.02) but not in the winter of 
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2007−08 (P=0.3). Mounding increased fluxes in the spring of 2008 (P=0.0001) but 

not in the spring of 2007 (P=0.3). Annual CH4 fluxes in the mounded treatment varied 

from 10.24±0.95 to 17.29±1.25 kg ha−1 yr−1 and were on average 13.92±0.82 kg ha−1 

yr−1 (Fig. 4.2). Annual soil CH4 fluxes in the unmounded treatment varied from 

6.52±0.70 to 12.95±0.94 kg ha−1 yr−1 and were on average 9.87±0.62 kg ha−1 yr−1. 

 

Methane emitted from the mounded subplots was significant affected by the position 

of chambers (P=0.0001, Table 4.4). The average CH4 emission over the two years of 

study was 0.67±0.17, 3.82±0.40 and 18.51±1.39 mg m−2 d−1 from the mounds, 

undisturbed ground and hollows, respectively. The consumption of methane 

occasionally took place inside the dry hollows, the top of mounds and undisturbed 

ground. Soil CH4 emitted from the hollows was more variable than fluxes from the 

undisturbed ground and mounds (Fig. 4.3). Methane emitted from the mounded 

subplots was affected by fertilisation (P=0.001) and drainage (P=0.05, Table 4.4). 

There was a significant interaction between drainage and fertilisation (P=0.0001), 

drainage and the position of chambers (P=0.0001), fertilisation and the position of 

chambers (P=0.0001) and drainage, fertilisation and the position of chambers 

(P=0.03, Table 4.4). Annual CH4 fluxes varied from 63.84±8.58 to 69.69±6.35, 

2.19±0.62 to 2.60±0.94 and 5.91±0.80 to 18.62±2.19 kg ha−1 yr−1 in the hollows, 

mounds and undisturbed ground (Fig. 4.4). On average annual soil CH4 fluxes were 

67.55±5.10, 2.45±0.64 and 13.96±1.46 kg ha−1 yr−1 in the hollows, mounds and 

undisturbed ground. 
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Table 4.4. Summary of the general linear model of soil CH4 emissions in the mounded 
plots. The general linear model tested the significance of drainage, fertilisation and 
position (mounds, hollow, undisturbed ground) across sampling dates (plot nested 
within drainage and date enter as repeated measure). 
Parameter F P 

Drainage 7.72 0.05 

Plot 21.43 <0.0001 

Fertilisation 15.94 <0.0001 

Drainage×Fertilisation 0.92 0.339 
Position 470.43 <0.0001 

Drainage×Position 19.40 <0.0001 

Fertilisation×Position 7.71 <0.0001 

Drainage×Fertilisation×Position 3.56 0.029 

Sampling date 24.15 <0.0001 

Drainage×Sampling date 1.70 0.013 

Position×Sampling date 9.13 <0.001 

Fertilisation×Sampling date 1.49 0.048 

Drainage×Position×Sampling date 2.04 <0.0001 

Drainage×Fertilisation×Sampling date 0.66 0.916 
Fertilisation×Position× Sampling date 1.40 0.030 

Drainage×Fertilisation×Position×Sampling date 0.64 0.984 
P values in bold are statistically significant (P< 0.05). 
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Figure 4.3. Methane fluxes from the mounded subplots (showing mean values and 
standard errors for fluxes from the hollows, mounds and undisturbed ground 
(Und/ground) for each all sampling dates (n=31). 
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Figure 4.4. Annual CH4 fluxes (kg CH4 ha−1 yr−1) from the hollows, on the top of 
mounds and UDG (undisturbed ground) in the mounded subplots. Different letters in 
bold indicate a significant difference in CH4 fluxes (P=0.05) between the hollows, 
mounds and undisturbed ground (n=20, 11 and 31 for 2006−07, 2007−08 and 
2006−08). 
 

4.3.4 Effect of fertilisation on CH4 emissions  

 

Methane emissions were significantly increased by fertilisation (P=0.0001, Table 4.1). 

The average daily soil CH4 emission rate over the two years of study was 3.86±0.23 

and 2.66±0.16 mg m−2 d−1 in the fertilised and unfertilised subplots (Table 4.2). 

Fertilisation increased CH4 emissions in 2006−07 (P=0.0001) but not in 2007−08 

(P=0.2, Table 4.2). Methane emissions were significantly higher in 2006−07 than in 

2007−08 (P=0.0001). Methane emissions from the fertilised and unfertilised subplots 

varied from month to month (P=0.0001, Table 4.1). Averaged monthly soil CH4 

emissions in the fertilised treatment varied from 0.23±0.36 to 9.67±1.41 mg m−2 d−1, 

while in their unfertilised counterparts emissions varied from 1.12±0.56 to 6.56±0.95 

mg m−2 d−1 (Fig 4.1c).  
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Methane emissions exhibited a seasonal trend (Fig. 4.1c). Averaged seasonal CH4 

fluxes from the summer of 2006 to the spring of 2008 are shown in Table 4.3. 

Fertilisation increased fluxes in the summer of 2006 (P=0.0001) but not in 2007 

(P=0.7). The two summers differed significantly in fluxes with more CH4 emitted in 

2006 than in 2007 (P=0.0001). Fertilisation increased CH4 fluxes in the autumn of 

2006 (P<0.0001) and in 2007 (P=0.03). Fertilisation did not affect soil CH4 emissions 

in the winter of 2006 (P=0.2) or 2007 (P=0.6) as well the spring of 2007 (P=0.2) or 

2008 (P=0.9). Annual soil CH4 fluxes in the fertilised treatment varied from 

9.22±0.94 to 18.55±1.25 kg ha−1 yr−1 and were on average 14.09±0.84 kg ha−1 yr−1 

(Fig. 4.2). Annual CH4 fluxes in the unfertilised treatment varied from 7.54±0.73 to 

11.68±0.88 kg ha−1 yr−1 and were on average 9.70±0.59 kg ha−1 yr−1. 

 

4.3.5 Relationships between CH4 emissions and environmental variables 

 

Methane emissions in the drainage (drained and undrained plots) and mounding 

(mounded and unmounded subplots) treatments were not correlated with measured 

environmental variables. Methane emissions from fertilised subplots were correlated 

with soil temperature at all depths (exponential relationship, R2= 0.31, P=0.03, for all 

depths, Fig. 4.5). A weak and non significant relationship was detected between soil 

moisture content and CH4 emissions in the fertilised subplots (R2=0.14, P=0.09). 

Methane emitted from fertilised subplots was significantly correlated with soil water 

table depth (R2=0.29, P=0.01, Fig. 4.6).  
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Figure. 4.5. The exponential relationship between soil CH4 emissions and soil 
temperatures measured at all depths in the fertilised subplots (n=23). 
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Figure 4.6. The linear relationship (P=0.01) between the CH4 emissions and the water 
table depth, in the fertilised subplots (n=23). 
 

4.4 DISCUSSION 

 

4.4.1 Effects of drainage on CH4 emissions 

 

In general, drainage of peatland soils has been shown to decrease CH4 emissions due 

to lower CH4 production with increased aeration and increased oxidation of the CH4 

in the aerobic part of the soil by methane oxidising microbes (e.g., Glenn et al. 1993; 

Roulet and Moore 1995; Nykänen et al. 1998). The result of the present study showed 

that drainage decreased soil CH4 fluxes. Annual CH4 fluxes in the drained plots (3.23 

to 6.27 ha−1 yr−1) were higher than fluxes of 1.2−2.6 kg CH4 ha−1 yr−1 reported for an 

unplanted grassland site at Harwood Forest not far from the present study site (Ball et 

al. 2007) and 1−2 kg CH4 ha−1 yr−1 to uptake rates of about 1.8 kg ha−1 yr−1 measured 

in a drained upland bog used for forestry in Scotland (MacDonald et al. 1996; 1997). 

The difference could due to the variability in the water table depth between this site 

and other sites where the other experiments were conducted. 

 

Annual soil CH4 emissions in the undrained plots varied from 13.53±0.92 to 

21.18±1.38 kg ha−1 yr−1 and are in the lower range of 1.10−110 kg CH4 ha−1 yr−1
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reported for wet forest soils in Canada (Castro et al. 1993; Yavitt et al. 1995) and 

7.9−204 kg CH4 ha−1 yr−1 reported for fertilised grasslands on wet peaty soils in the 

Netherlands (Van Den Pol-van Dasselaar et al. 1999). The difference could be due to 

variations in water table depth between this site and areas where the other 

experiments were conducted. The soils in the other areas are deeper and may be 

waterlogged throughout the year, whereas peaty gley soils in the present study are 

seasonally waterlogged and their water table depth can drop significantly during the 

summer. The drop in water table depth may increase aeration and CH4 oxidation 

decreasing CH4 production and a result of reduced methanogenesis 

 

Drainage decreased CH4 fluxes by 57 to 76%. This finding agrees with results of 

previous studies conducted under field and laboratory conditions in temperate and 

boreal peatland sites (Freeman et al. 1993; Roulet et al. 1993; Martikainen et al. 1995; 

Minkkinen et al. 2002). For example Minkkinen et al (2002) reported that drainage 

decreased CH4 by 50% in peaty soils in the boreal region. They attributed low fluxes 

from drained sites to decreased methanogenesis with increased aeration and increased 

oxidation of CH4 in the aerobic part of the soil by methane oxidising microbes. 

Freeman et al. (1993) collected intact soil cores from a Welsh peatland to study the 

potential effect of climate change on CH4 fluxes. They manipulated the water table 

depth within intact peat monoliths in the laboratory, thereby simulating water table 

lowering imposed by climate change. They found that the soil water table lowering 

treatment decreased soil moisture content, increased soil temperature and decreased 

CH4 emissions by up to 80%. In natural organic soils, CH4 is produced by 

methanogens in water saturated soil profiles where the old and fresh organic matter is 

subjected to anaerobic decomposition, whereas after drainage, the organic substrate is 

oxidised in the aerated layers before reaching saturated profiles and thus decrease the 

organic substrate for CH4 production (e.g., Nykänen et al. 1998).  

 

In the present study, CH4 emissions in the undrained and drained plots were 35 and 

65% lower in 2007−08 than in 2006−07. The summer and autumn of 2006 were 

warmer than in 2007 and this may have reduced fluxes in 2007−08. The decrease may 

also have been caused by lack of variation in CH4 emissions or infrequent sampling in 

2007−08. In 2007−08, CH4 fluxes were measured 11 times at monthly interval, 
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compared to 20 times in 2006−07. It is possible that episodic emissions caused by 

periodic rains (e.g., Kettunen et al. 1996) or rapid changes in water table depth and 

temperature (e.g., Windsor et al. 1992; Kettunen et al. 1996) were missed due to 

infrequent sampling in 2007−08.  

 

There was consumption of CH4 in the drained plots in the summer of 2007, which 

could be attributed to increased aeration due to lowering of the water which may have 

created a thick aerobic soil layer where CH4 oxidation exceeded CH4 produced in the 

anaerobic layer beneath (e.g., Glen et al. 1993; Nykänen et al. 1998; van den Pol-van 

Dasselaar et al. 1998). Several studies have shown that well-drained organic forest, 

natural forest and grassland soils can be a net sink for atmospheric CH4  (Steudler et 

al. 1989; Mosier et al. 1991; 1997; Castro et al. 1993; Lessard et al. 1994; Ambus and 

Christensen 1995; Nykänen et al. 1995; Dobbie et al. 1996; Priemé and Christensen 

1997; Maljanen et al. 2003a). The observed net CH4 uptake (0.08 mg m−2 d−1) is 

closed to 0−1 mg m−2 d−1 reported for temperate grassland soils (Mosier et al. 1991; 

Dobbie et al. 1996).  

 

4.4.2 Effects of mounding on CH4 emissions 

 

Mounding buries the litter and the organic layers beneath the mineral soil layers 

(Smolander et al. 2000; Saari et al. 2004) and may alter environmental variables 

controlling soil CH4 fluxes. To our knowledge few studies have attempted to evaluate 

the effect of mounding on soil CH4 fluxes. Mounding increased soil CH4 emissions by 

34 to 59%. The effect of mounding on CH4 emissions was more pronounced in 

2006−07 than in 2007−08. A study conducted in south-eastern Finland found that 

mounding decreased CH4 emissions by 33% in the first year, but increased them in 

subsequent years (Saari et al. 2004). They suggested that the initial decrease in CH4 

fluxes after mounding occurred as a result of CH4 oxidation in the mineral soil on the 

top of mounds. They also suggested that the double organic horizons may have 

reduced diffusion of atmospheric CH4 into the mineral soil beneath mounds and 

inhibited consumption in that layer during subsequent years. However, Saari et al. 

(2004) did not evaluate CH4 fluxes from hollows where the soil used to make mounds 

was excavated from. High CH4 fluxes observed in the mounded subplots in the 
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present study can be attributed to large emissions measured from hollows which were 

periodically covered with stagnant water inhabited by green algae (e.g., Schiller and 

Hastie 1996). 

 

Methane emissions in the mounded subplots were higher in the hollows than mounds 

and undisturbed ground. This finding agrees with results of previous studies which 

reported large fluxes from anaerobic environments, such as peatlands (Crill et al. 

1988; Roulet et al. 1992; Lloyd et al. 1998; Yavitt and Williams 2000; Laine et al. 

2007), rice paddies (Hou et al. 2007) and in periodically flooded forests (e.g., Rusch 

and Rennenberg 1998; Terazawa et al. 2007). The presence of green algae in stagnant 

water in the hollows may have provided a substrate for CH4 production by 

methanogens (e.g., Schiller and Hastie 1996). Large CH4 fluxes have also been 

reported in studies conducted in forest drainage ditches in boreal and peatland sites 

(Roulet and Moore 1995; Schiller and Hastie 1996; Minkkinen et al. 1997; Von 

Arnold et al. 2005; Minkkinen and Laine 2006) because ditch bottoms are often 

colonised by vascular plants, which decreases the flow of water, especially in bogs 

(Minkkinen et al. 2008). Vascular plants may enhance CH4 emissions in wetlands by 

providing a substrate for methanogens and a major pathway for emissions (Frenzel 

and Rudolph 1998; Bellisario et al. 1999; Joabsson and Christensen 2001). The soil 

bulk density in the mounded subplots was increased by the excavator used for 

mounding. It is possible that soil compaction caused anaerobic conditions in the 

mounded subplots may have increased CH4 production and fluxes (e.g., Ruser et al. 

1998; Smith et al. 2000; Flessa et al. 2002). However, there was no relationship 

between soil CH4 fluxes and bulk density. 

 

Annual fluxes (67.55±5.10 kg CH4 ha−1 yr−1) observed in the hollows are similar to 

emissions (62 kg CH4 ha−1 yr−1) reported for hummocks and hollows in an Irish 

lowland blanket bog (Laine et al. 2007). Annual CH4 observed in the mounds 

(1.95±0.71 to 2.60±0.94 kg CH4 ha−1 yr−1) was within the range (0.2−2.8 kg CH4 ha−1 

yr−1) reported for an unplanted grassland site at Harwood Forest (Ball et al. 2007). 

Occasionally, methane was consumed in the hollows after the water had evaporated, 

which was also observed on the top of mounds. It seems that dry conditions in both 

the hollows and mounds increased aeration and increased oxidation of CH4 which 
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exceeded CH4 production (e.g., Sundh et al. 1994, 1995; Nykänen et al. 1998; 

Maljanen et al. 2003a; Melling et al. 2005) due to reduced methanogenesis.  

 

4.4.3 Effects of fertilisation on CH4 emissions 

 

Fertilisation increased soil CH4 emissions by 20−59%. This finding agrees with 

results of studies conducted elsewhere which found that N increase CH4 fluxes (e.g., 

Steudler et al. 1989;  Castro et al. 1994; King and Schnell 1994, 1998; Hutsch 1996; 

Sitaula et al. 1995; Gulledge et al. 1997; Saari et al. 1997; Wang and Ineson 2003; 

Bodelier and Laanbroek 2004; Suwanwaree and Robertson 2005). The effect of N 

fertiliser on CH4 fluxes has been attributed to NH4
+ ions that inhibit CH4 oxidation by 

competitive inhibition of the enzyme mono-oxygenase and by decreasing pH when 

NH4
+ is applied to soil (Hutch 1998). In addition to NH4

+, the activity of CH4 

oxidising bacteria is also reduced by nitrite (NO2
−) and nitrate (NO3

−) ions (Reay and 

Nedwell 2004). Increased CH4 fluxes observed in the fertilised treatment in this study 

may also have been caused by the soil environment which was suitable for CH4 

formation and emission, especially in the summer/autumn of 2006. Suwanwaree and 

Robertson (2005) studied soil CH4 fluxes in a forest in southwest Michigan, USA and 

found that adding N at 100 kg N ha−1 increased CH4 emissions by 60%. Steudler et al. 

(1989) found that adding NH4NO3 at a rate of 120 kg N ha−1 yr−1 increased CH4 fluxes 

by 33% in temperate forest soils. Sitaula et al (1995) demonstrated that adding N at a 

rate of 90 kg N ha−1 yr−1 over a period of two years increased CH4 emissions by 38% 

in a Scots pine forest in Norway. Powlson et al. (1997) found that CH4 emissions 

from soils that had received ammonium nitrate at 144 kg ha−1 yr−1 for over 150 years 

increased by 50%. Castro et al. (1994) found that soil CH4 emitted from 26 year old 

fertilised slash pine (Pinus elliottii var. elliottii Englem.) plots in Florida was 5 to 20 

times higher than in their unfertilised counterparts. In contrast, Whalen and Reeburgh 

(2000), Bradford et al. (2001) and Steinkamp et al. (2001) found that N fertiliser had 

no effect on CH4 fluxes in forest soils. 

 

There were no significant differences in fluxes between the fertilised and unfertilised 

treatment in 2007−08. The decline in CH4 fluxes in the fertilised treatment in 

2007−08 may indicate that N uptake by plants, losses through leaching and as gaseous 
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N2O and N2 depleted the pool of N applied in this site in 2007−08. Robertson et al. 

(2000) found that soils that had been out of arable agriculture for less than 10 years 

emitted less CH4 than those still fertilised and used for arable agriculture. They 

suggested that the recovery starts soon after cultivation and fertilisation has ceased, 

but may persist for decades to centuries (e.g., Ojima et al. 1993; Flessa et al. 1995; 

Dobbie and Smith 1996; Kruse and Iverson 1995; Priemé et al. 1997; Suwanwaree 

and Robertson 2005). 

 

4.4.4  Effects of environmental factors on CH4 emissions 

 

The lack of a relationship between CH4 emissions in the drained and undrained plots 

and soil water table is contrary to results of several studies conducted in natural 

peatlands which collectively found that soil water table was the main controller of 

CH4 emissions (e.g., Liblik et al. 1997; Nykänen et al. 1998; Frenzel and Karofeld 

2000; Strom and Christensen 2007). No relationship between CH4 fluxes and soil 

temperature was found for the drainage and mounding treatments. Ball et al (2007) 

also found no relationship between soil temperature and CH4 fluxes in a forest close 

by. Soil CH4 flux in this site was not correlated with soil water content in either of the 

treatments. A lack of a significant relationship between water content and soil CH4 

fluxes has been reported in other studies (e.g. Sjögersten and Wookey 2002; Maljanen 

et al. 2003a; Zerva and Mencuccini 2005a). The lack of a relationship between 

environmental variables and CH4 emitted from the drainage and mounding treatment 

may suggest that substrate availability was probably more important in controlling 

emissions than abiotic factors at this site.  

 

Methane emissions in the fertilised subplots were exponentially related to soil 

temperature at all depth (T1, T5 and T10) and were high when the soil temperature was 

above 12°C. Substrate availability and the effect of temperature may have induced 

changes in microbial activity and increased CH4 production and emission in the 

fertilised subplots. The relationship between soil CH4 emissions and soil temperature 

has been commonly reported in field and laboratory studies (e.g., Dunfield et al. 1993; 

Castro et al. 1995; Komulainen et al. 1998; Zerva and Mencuccini 2005a). Dunfield et 

al. (1993) investigated the effect of soil temperature on CH4 fluxes from a peaty soil 
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from Ontario and Quebec in the laboratory. They found that the production rate was 

controlled by soil temperature with optimal values in the 20−25°C temperature range 

and extremely lower production rates in the 0 to 15°C temperature range. Castro et al. 

(1995) measured soil CH4 consumption at Harvard Forest and found that it was 

strongly controlled by soil temperature between −5 and 10°C and became independent 

of soil temperature between 10 and 20˚C.  

 

4.5 CONCLUSION 

 

Our study shows that drainage carried out at afforestation can decrease CH4 fluxes 

from a peaty gley soil under the temperate and maritime conditions prevalent in the 

UK, similarly to what has already been found in deeper peaty soils both in the UK and 

elsewhere. Methane fluxes in the drainage and mounding treatment did not respond to 

abiotic factors, suggesting that the availability of organic substrate was more 

important than abiotic factors. Soil CH4 efflux in the fertilised treatment was 

exponentially related with soil temperature and water table depth indicating substrate 

availability and high temperate induced soil microbial activity.  
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CHAPTER 5 

 
NITROUS OXIDE EMISSIONS FROM A PEATY GLEY SOIL: 

EFFECT OF DRAINAGE, MOUNDING AND FERTILISATION 

 

5.1 INTRODUCTION 

 

Nitrous oxide is an important trace gas that contributes to the depletion of the 

stratospheric ozone (Crutzen and Enhalt 1997; Ginting and Eghball 2005). Nitrous 

oxide is estimated to contribute 6% to global warming (Bowman 1998; Dalal and 

Allen 2008). Its atmospheric concentration has increased by 17% since the start of the 

industrial revolution (Rockmann et al. 2003; Smith and Conen 2004) and is currently 

increasing at a rate of 0.2 to 0.3% per year (Flessa et al. 1995; Mosier et al. 1998). 

 

Soils are the most important source of atmospheric N2O contributing about 57% (9 Tg 

yr−1) to the total N2O global budget (Kroeze et al. 1999). N2O emitted from soils is 

produced by microbial processes of nitrification and denitrification (Machefert et al. 

2002; Koponen et al. 2006). Increasing N inputs in agricultural and natural soils have 

increased N2O emissions in the past few decades (Brumme and Beese 1992; Flessa et 

al. 1998). The deposition of atmospheric N onto forests and other natural soils has 

also contributed to increased global N2O emissions (Gundersen et al. 1998; Skiba and 

Smith 2000). Agricultural soils are the main sources of anthropogenic N2O emissions 

(Kasimir-Klemedtsson et al. 1997; Perez et al. 2001). Fertilised agricultural soils and 

grasslands are estimated to contribute 3.3 Tg N2O−N yr−1 and 0.8 Tg N2O−N yr−1 to 

the atmosphere, respectively (Stehfest and Bouwman 2006). According to Crutzen et 

al (2008) the agricultural contribute 4.3 −5.8 Tg N2O−N yr−1. Drained fertile soils 

used for agriculture in peatland sites are also sources for atmospheric N2O (Velthof 

and Oenema 1995). The production and emission of N2O is primarily controlled by 

the availability of mineral N, soil temperature, soil water content, and the availability 

of labile organic compounds (Granli and Bockman 1994). Nitrous oxide emissions 

from water-saturated peatland soils are insignificant (Regina et al. 1996). However, 

N2O emissions from fertile soils in peatland sites generally increase after drainage 

(Merbach et al. 1996; Regina et al. 1996 Augustin et al. 1998b). 
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Site preparation for afforestation and replanting in upland Britain usually involves 

drainage and ploughing although in more recent years, ploughing was replaced by 

mounding using excavators (Ball et al. 2007; Minkkinen et al. 2008). Drainage and 

mounding may affect the dynamics of N2O in peaty gley soils by changing soil 

temperature (Davidson et al. 1998; Kätter et al. 1998), soil moisture content 

(Schlentner and Van Cleve 1985; Carlyle and Than 1988) and substrate availability 

(Smolander et al. 1998; Ruser et al. 2006). These changes may accelerate organic 

matter decomposition in peaty gley soils (Zerva et al. 2005) and provide a substrate 

for N2O formation and emission. Forests are commonly fertilised to increase tree 

growth. The addition of N compounds to increase the amount of mineral N in soils 

also increases the probability for gaseous N losses including the formation and 

emissions of N2O (Minkkinen et al. 2008). Nitrous oxide emissions are not expected 

to increase in planting sites where fertilisation is restricted to phosphorus and 

potassium (PK) to repair nutrient balances (Minkkinen et al. 2008). 

 

Drainage and soil cultivation as well as fertilisation have increased N2O emissions in 

agricultural and forest soils in peatland sites (Kasimir-Klemedtsson et al. 1997; Flessa 

et al. 1998; Huttunen et al. 2003b). The effects of drainage, mounding and fertilisation 

on N2O fluxes of peaty gleys soils under UK conditions have not been reported. We 

hypothesised that: (a) drainage, mounding and fertilisation would increase soil N2O 

fluxes and (b) environmental variables would affect N2O emissions from a peaty gley 

soil. The objectives of the study were to: i) measure nitrous oxide over a period of two 

years following drainage, mounding and fertilisation ii) investigate the relationships 

between N2O and soil temperature, soil moisture content and water table depth. 

 

5.2 MATERIALS AND METHODS 

 

5.2.1 The study site  

 

The study site was described in Chapter 1 and will not be repeated here. 
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5.2.6 Experimental design 

 

The experimental design and site preparation were described in Chapter 2. 

 

5.2.3  Nitrous oxide measurements and analysis  

 

Air samples to determine N2O were collected as described for CO2 in Chapter 3. N2O 

samples were collected 34 times over a period of 2 years from 12 June 2006 to 7 May 

2008. Air samples were collected for 3 consecutive days commencing a day after 

fertilisation on 12 June 2006 and then every fourth day in June 2006. Samples were 

collected weekly in July 2006, biweekly in August and September 2006 and then 

monthly for the duration of the study. Measurement cycles lasted between 30 and 40 

minutes and linearity checks had shown that interpolation of two points taken at the 

start and at the end of the closure give a good approximation of the true flux (Zerva 

and Mencuccini 2005, unpublished data). Linear accumulation of N2O was also 

checked every two months during the first year of the present study. For the vast 

majority of the checks conducted, linearity was ensured by linear regression 

coefficients higher than R2=0.99. Ambient air samples were also collected to measure 

the initial concentration of N2O in the field. Air Samples were transported to the 

laboratory. In the laboratory, air samples were transferred from gas-tight bags to 20 

ml crimp−top glass vials with rubber seals which have been evacuated repeatedly 

using a hand operated pump. Vials were filled with samples from bags to ensure 

effective flushing prior to analysis. The concentration of N2O in samples was 

analysed by Agilent 6890 Series (Agilent Ltd, Stockport, Cheshire, UK) gas 

chromatograph system fitted with an electron capture detector (ECD) and an 

automated injector system. Peak integration (and autosampler control) was done with 

a Peak Simple system. The gas chromatograph was calibrated with N2O standards of 1 

and 10 µmol mol−1. 

 

5.2.4 Calculation of N2O fluxes 

 

N2O flux rates (mg m−2 d−1) were calculated by the following equation (Zerva, 2004): 

F= d×V × (Ct −C0) 
A t 
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F = N2O flux (mg m−2 d−1) 

d (mg m−3) = gas density calculated assuming that a mole of gas (44 g N2O) occupy 

22.4 x 10−3 m3 of volume at 273 K. 

V = volume of the chamber (m3) 

A = area of the chamber (m2) 

Ct = concentration of N2O (µm mol−1) in the chamber after closure time  

C0 = initial concentration of N2O (µm mol−1)  

t = closure time of chamber in minutes. 

 

The N2O emission factor (the amount of N2O emitted per year as percentage of the 

total N fertiliser applied) was calculated as follows; Ef= (fluxes N2O−N kg/N applied 

Kg)/100%.  

 

5.2.5 Statistical analysis 

 

All data were checked for normality and log-transformed when required. Analyses 

were carried out both on averaged monthly fluxes as well as on seasonal and yearly 

totals. The general linear model (GLM) was used for analysis of variance. The general 

linear model tested for effects of three main factors (drainage, mounding and 

fertilisation) entered as fixed factors and plot entered as random factor nested within 

drainage. In case of monthly measurements, month was also entered as a repeated 

measures factor. The initial GLM included all possible second and third-order 

interactions. If interactions were not found to be significant, they were excluded and 

the model was run again without them to confirm the significance of the main factors. 

In case of significant interactions, the dataset was split and separate analyses were run 

for each combination. All analyses were run in Minitab 15 using the GLM procedure 

and the significance level was set at 0.05. Tukey’s pairwise comparison test was 

applied to determine significant differences between treated and untreated 

plots/subplots. For all analyses, values from individual chambers were averaged 

within each subplot. For the mounded subplots, weighted averaging was done by 

weighing each flux by the respective area covered by mound hills, mound hollows 

and undisturbed ground. The relationships between N2O fluxes and environmental 

factors were determined by linear regression. 
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5.3 RESULTS 

 

5.3.1 The effects of site preparation on soil N2O fluxes 

 
The soil N2O flux was significantly affected by fertilisation and mounding but not by 

drainage (Table 5.1). There were significant differences in N2O fluxes among plots 

(P=0.0001, Table 5.1). There was a significant interaction between fertilisation and 

mounding (P=0.02). 

 

Table 5.1 Summary of the general linear model showing the effect of drainage, 
fertilisation, mounding and sampling interval (month) on soil N2O fluxes. 
Sources of variation F P 
Drainage 0.32 0.601 
Plot 5.49 <0.0001 

Mounding 137.91 <0.0001 

Fertilisation 4.37 0.006 

Month 23.14 <0.0001 

Drainage×Fertilisation 0.12 0.74 
Drainage×Mounding 0.02 0.89 
Mounding×fertilisation 16.10 0.02 

Drainage×Month 0.55 0.95 
Mounding×Month 2.90 <0.0001 

Fertilisation×Month 47.45 <0.0001 

Mounding×Plot 2.90 <0.0001 

Fertilisation×Plot 47.45 <0.0001 

Month×Plot 1.21 0.22 
Drainage×Fertilisation×Mounding 1.31 0.32 
Drainage×Mounding×Month 0.85 0.66 
Drainage×Fertilisation×Month 0.24 1.0 
Mounding×Fertilisation×Month 2.47 0.002 

Mounding×Fertilisation×Plot 1.28 0.28 

Mounding×Month×Plot 0.88 0.73 
Fertilisation×Month×Plot 2.12 <0.0001 

Drainage×Mounding×Fertilisation×Month 0.86 0.65 
P values in bold are statistically significant (P< 0.05). 

 

5.3.2 Effects of drainage on soil N2O fluxes 

 

There were no significant differences in soil N2O fluxes between the drained and 

undrained plots (P=0.6, Table 5.1). Large N2O fluxes which coincided with 

fertilisation were observed in both the drained and undrained plots between June and 
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August 2006 (Fig. 5.1a). They declined sharply in September 2006 and remained 

consistently lower throughout the study period. The mean N2O flux from 2006 to 

2008 was 6.90±1.40 and 7.43±1.42 mg m−2 d−1 in the drained and undrained plots, 

respectively. In 2006−07, the mean N2O flux was 11.81±2.62 and 12.53±2.65 mg m−2 

d−1 in the drained and undrained plots, respectively. The mean N2O flux in 2007−08 

was 1.55±0.23 and 1.88±0.30 mg m−2 d−1in the drained and undrained plots, 

respectively. 

 

Averaged monthly N2O fluxes in the drained and undrained plots are shown in Fig. 

5.1a. N2O flux rates varied from month to month (P=0.0001). Mean monthly flux 

rates varied from a sink (−1.13±0.18 mg m−2 d−1) for atmospheric N2O to a net source 

(49.20±16.60 mg m−2 d−1) in the drained plots and from 0.89±0.27 to 48.34±15.07 mg 

m−2 d−1 in the undrained plots. N2O fluxes in the drained and undrained plots showed 

seasonal emissions patterns (Fig. 5.2a). N2O fluxes in the drained and undrained plots 

were higher in the summer of 2006 which coincided with fertilisation. Large N2O 

emissions observed in the drained and undrained plots declined sharply in the autumn. 

There was consumption of atmospheric N2O in both the drained and undrained plots 

in the winter of 2006−07. N2O emissions started to rise again in the spring of 2007 

and were higher in the summer/autumn of 2007, but fluxes were not as high as in the 

previous year. The fluxes were low again in the spring/winter of 2007−08.  There was 

no significant difference in N2O emissions between the drained and undrained plots in 

any season (Fig. 5.2a). Annual N2O fluxes are shown in Fig. 5.3. The annual fluxes 

were higher in 2006−07 than in 2007−08 (P=0.0001). Annual soil N2O fluxes varied 

between 1.87±0.27 and 13.71±3.04 kg N2O−N ha−1 yr−1 in the drained plots and were 

on average 8.02±163 kg N2O−N ha−1 yr−1. In the undrained plots, annual fluxes 

ranged between 2.18±0.35 and 14.55±3.21 kg N ha−1 yr−1 and were on average 

8.63±1.65 kg N2O−N ha−1 yr−1. 
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Figure 5.1 Averaged monthly N2O flux in: a) the drained and undrained, b) mounded 
and unmounded and c) fertilised and unfertilised from June 2006−May 2008 (showing 
mean values and standard error for each month) (n=34). 
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Figure 5.2. Seasonal soil N2O flux for all treatments. The vertical bars represent 
standard error of mean. Different letters in bold indicate significant differences 
(P<0.05) between the drained vs. undrained, mounded vs. unmounded and fertilised 
vs. unfertilised treatment (sum = summer, aut =autumn, win =winter and spr= spring).  
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Figure 5.3 Annual N2O flux from all treatments. The vertical error bars represent 
standard error of mean. Different letters in bold indicate significant differences 
between the drained vs. undrained, mounded vs. unmounded and fertilised vs. 
fertilised treatment in each sampling year (P<0.05) (n=23, 11 and 34 for 2006−07, 
2007−08 and 2006−08, respectively).  
 

5.3.3 Effects of mounding on N2O flux 

 

The N2O fluxes in this site were decreased by mounding (P=0.0001, Table 5.1). 

Fluxes were significantly higher in 2006−07 than in 2007−08 (P=0.04). The mean 

flux was 8.78±1.92 mg m−2 d−1 in the mounded subplots and 15.55±3.17 mg m−2 d−1 

in their unmounded counterparts in 2006−07, while in 2007−08 the mean flux was 

1.24±0.21 mg m−2 d−1 in mounded subplots and 2.18±0.32 mg m−2 d−1 in their 

unmounded counterparts. Mean monthly N2O flux rates are shown in Fig. 5.1b. 

Fluxes varied from month to month (P=0.0001). The mean monthly fluxes varied 

from a sink (−0.97±0.25 mg m−2 d−1) for atmospheric N2O to a net source (38.07±8.03 

mg m−2 d−1) in the mounded treatment and from a sink (−1.05±0.21 mg m−2 d−1) for 

atmospheric N2O to a net source (62.29±8.09 mg m−2 d−1) in the unmounded 

treatment. Large N2O fluxes were observed in the mounded and unmounded subplots 

in the summer of 2006, which coincided with fertilisation (Fig. 5.2b). Fluxes declined 

sharply in the autumn. There was consumption of atmospheric N2O in the mounded 

and unmounded subplots in the winter of 2006−07. The fluxes in both the mounded 
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and unmounded treatment increased steadily from the spring of 2007, reaching high 

values in the summer/autumn of 2007. However, the fluxes were not as high as in the 

previous year. Mounded and unmounded subplots differed significantly in N2O fluxes 

in the summer of 2006 (P=0.001), the spring of 2007 (P=0.006) and the autumn of 

2007 (P=0.0001, Fig. 5.2b). Annual emissions from the mounded and unmounded 

subplots are shown in Fig. 5.3. Annual N2O emissions in the mounded and 

unmounded subplots were higher in 2006−07 than in 2007−08 (P=0.0001). Annual 

soil N2O fluxes in the mounded subplots varied from 1.44±1.5 to 10.20±2.22 kg 

N2O−N ha−1 yr−1 and were on average 6.01±1.19 kg N2O−N ha−1 yr−1. In the 

unmounded subplots, annual N2O fluxes varied from 2.53±0.37 to 18.06±3.84 N2O−N 

ha−1 yr−1 and were on average 10.63±1.98 kg N2O−N ha−1 yr−1.  

 

Nitrous oxide emitted from mounded subplots was significantly affected by the 

position of chambers and fertilisation (all P=0.0001, Table 5.2). Mounds, hollows and 

undisturbed ground differed significantly in soil N2O flux rates (P=0.0001). There 

was a significant difference in N2O fluxes among mounded subplots (P=0.0001). 

There was a significant interaction between drainage and the position of chambers 

(P=0.05), fertilisation and the position of chambers (P=0.0001) and drainage, 

fertilisation and the position of chambers (P=0.004). Nitrous oxide emitted from 

hollows varied from 0.64±0.14 to 11.71±0.72 mg m−2 d−1 and was on average 

8.02±1.03 mg m−2 d−1. Nitrous oxide emitted from mounds varied from 1.53±0.23 to 

8.61±0.53 mg m−2 d−1 and was on average 6.26±0.77 mg m−2 d−1. Nitrous oxide fluxes 

from the undisturbed ground varied from 1.60±0.24 to 22.60±1.39 mg m−2 d−1 and 

were on average 15.60±1.77 mg m−2 d−1. Annual fluxes in the hollows, mounds and 

undisturbed ground are shown in Fig. 5.4. Annual fluxes were higher in 2006−07 than 

in 2007−08 (P=0.0001). Annual soil N2O fluxes in the hollows, mounds and 

undisturbed ground were on average 9.32±1.20, 7.28±0.90 and 18.13±2.06 kg N2O−N 

ha−1 yr−1, respectively. 
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Table 5.2. Summary of the general linear model of soil N2O flux in the mounded 
plots. The model included the effects of drainage, fertilisation, chamber position and 
sampling date. Plot was entered as random factor nested within drainage. The date of 
sampling was also entered as a repeated measures factor.  
Parameter F P 

Drainage 0.01 0.99 
Plot 29.84 <0.0001 

Fertilisation 1447.50 <0.0001 

Position 57.62 <0.0001 

Drainage×Fertilisation 0.07 0.92 
Drainage×Position 2.92 0.05 

Fertilisation×Position 83.96 <0.0001 

Drainage×Fertilisation×Position 5.57 0.004 

Sampling date 70.65 0.0001 

Drainage×Sampling date 0.95 0.54 
Position×Sampling date 5.71 <0.0001 

Fertilisation×Sampling date 61.70 <0.0001 

Drainage×Position×Sampling date 0.77 0.91 
Drainage×Fertilisation×Sampling date 0.61 0.96 
Fertilisation×Position× Sampling date 4.63 <0.0001 

Drainage×Fertilisation×Position×Sampling date 0.97 0.54 
P values in bold are statistically significant (P< 0.05). 
 

 
Fig.5.4 Annual N2O flux from hollows, mounds and undisturbed ground (UDG) in the 
mounded subplots. Vertical bars indicate standard error of means. Different letters in 
bold indicate a significant difference in N2O flux between the hollows, mounds and 
undisturbed ground in each sampling year (P<0.05) (n=23, 11 and 34 for 2006−07, 
2007−08 and 2006−08, respectively).  
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5.3.6 The effect of fertilisation on soil N2O flux 

 

Nitrous oxide emissions were significantly increased by fertilisation (P=0.0001, Table 

5.1). The average N2O flux over the two years of study was 13.99±1.91 mg m−2 d−1 in 

the fertilised subplots and 0.34±0.10 mg m−2 d−1 in their fertilised counterparts. The 

two years of study differed significantly in N2O fluxes (P=0.0001). The average N2O 

flux in the fertilised and unfertilised subplots was 24.42±3.42 and −0.09±0.14 mg m−2 

d−1 in 2006−07. In 2007−08, the average N2O flux was 2.62±0.34 and 0.81±0.14 mg 

m−2 d−1 in fertilised and unfertilised subplots, respectively.  

 

Nitrous oxide fluxes in the fertilised subplots increased soon after fertilisation in June 

2006. Large fluxes in the fertilised subplots were concentrated in a relatively short 

period between June and August 2006 (Fig. 5.1c). The fluxes in the fertilised subplots 

declined sharply in September 2006 and remained close to the background emissions 

throughout the study. Averaged monthly N2O fluxes are shown in Fig.5.1c. N2O 

fluxes varied from month to month (P=0.0001). They varied from a sink (−0.61±0.27 

mg m−2 d−1) for atmospheric N2O to net source (94.96±8.36 mg m−2 d−1) in the 

fertilised subplots and from a sink (−1.41±0.06 mg m−2 d−1) for atmospheric N2O to 

net source (2.37±0.82 mg m−2 d−1) in their unfertilised counterparts. Averaged 

seasonal N2O fluxes from the summer of 2006 to the spring of 2008 are summarised 

in Fig. 5.2c. Fluxes in the fertilised subplots were higher in the summer of 2006 after 

fertilisation and declined in the autumn reaching low values in the winter of 2006−07. 

Fluxes increased steadily in the spring of 2007 and reached high values in the 

summer/autumn of 2007, but fluxes were not as high as in the previous year. The 

fertilised subplots consumed atmospheric N2O in the winter of 2006−07. Fertilisation 

increased N2O fluxes in all seasons (Fig. 5.2c). There was consumption of 

atmospheric N2O in the unfertilised subplots in the autumn and winter of 2006. 

 

Annual soil N2O fluxes are summarised in Fig. 5.3. Annual fluxes varied greatly 

between the fertilised and unfertilised subplots. Annual soil N2O fluxes in the 

fertilised subplots were higher in 2006−07 than in 2007−08. The opposite occurred in 

the unfertilised subplots. Annual soil N2O fluxes in the fertilised treatment varied 

from 3.12±0.40 to 28.37±3.98 kg N2O−N ha−1 yr−1 and were on average 16.25±2.22 
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kg N2O−N ha−1 yr−1, whereas in the unfertilised treatment annual fluxes varied from a 

sink (−0.11±0.16) for atmospheric N2O to a net source (0.94±0.16 kg N2O−N), and 

were on average 0.39±0.13 kg N2O−N ha−1 yr−1. The N2O emission factor was 34.9% 

in 2006−07 and 2.7% in 2007−08. 

 

5.3.5 Relationships between N2O flux and environmental variables 

 

N2O fluxes were negatively correlated with the soil water table depth in the drained 

plots (R2= 0.49, P=0.0001, Fig. 5.6) and undrained plots (R2= 0.64, P=0.0001, Fig. 

5.5). No relationship was observed with soil moisture content in either of the 

treatments in this site. Nitrous oxide fluxes in the drained plots were significantly 

correlated with soil temperature at all measured depths (exponential relationships R2 

=0.27, P=0.002 for T1, R2=0.31, P=0.001 for T5 and R2=0.36, P=0.001 for T10). An 

exponential relationship between N2O fluxes and soil temperature was also detected in 

the undrained plots (R2=0.33, P=0.0.001 for T1 and r2=0.36 P=0.001 and R2=0.36, 

P<0.001 for T5, R2=0.33, P=0.001 for T10). N2O fluxes in the mounded (R2=0.23, 

P=0.004 for T1, R2=0.25, P=0.002 for T5 and R2=0.33, P=0.0004 for T10) and 

unmounded (R2=0.31, P=0.001 for T1, R2=0.34, P=0.0001 for T5 and R2=0.37, 

P=0.0001 for T10) subplots were also exponentially correlated to soil temperature. 

Figure 5.6 shows the exponential relationship between soil temperature at 10 cm 

depth in the drained and undrained plots as well as mounded, unmounded and 

fertilised subplots. 
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Figure 5.5 Relationships between N2O flux and soil water table depth for the drained 
(D) and undrained (UD) plots. Dots represent means of all chambers at each sampling 
data. Fitted lines are exponential relationships for data for each treatment where 
P<0.05. Drained (D) y=4.56−0.031x R2= 0.49, P=0.0001; Undrained (UD) y=2.85−0.062x, 
R2= 0.64, P=0.0001 (n=34). 
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Figure 5.6 Relationships between N2O flux and soil temperature at 10 cm depth. Dots 
represent means of all chambers at each sampling date. Fitted lines are exponential 
relationships for data for each treatment where P<0.05. a) Drained (D) y=2.640.193x 
R2=0.33, P<0.001; Undrained (U) y=2.960.186x, R2=0.35, P=0.0001; b) Fertilised (F) 
y=5.620.188x R2=0.33, P=0.001, Mounded (M) y=2.720.164x R2=0.28, P=0.001; 
Unmounded (UM) y= 2.49 0.221x R2=0.38, P=0.0001 (n=34). 
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drainage, when the increased aeration allows nitrification to take place (Freeman et al. 

1993; Martikainen et al. 1993a; Kliewer and Gilliam 1995; Schiller and Hastie 1996; 

Regina et al. 1996, 1999; Kasimir-Klemedtsson et al. 1997; Dowrick et al. 1999; 

Booth et al 2006; Neill et al. 2006). Soil microbes face drastic changes in the substrate 

supply and soil conditions caused by drainage and associated soil surface disturbances 

(e.g., Saari et al. 2009). In well-drained fertile peat soils, increased soil temperature 

and improved aeration after drainage may favour organic matter decomposition and 

release N through mineralisation (King et al. 1986; Updegraff et al. 1995; Saari et al. 

2009) which provide a substrate for N2O producing microbes (Freeman et al. 1996; 

Smolander et al. 1998). It is possible that drainage was not drastic enough in this site 

because the soil water table depth rose to the soil surface in the winter. The seasonal 

fluctuation in the soil water table depth may have masked the effects on drainage on 

N2O emissions. Soils in the present study are low in pH and inorganic N, a factor 

which may also have limited nitrification (e.g., Martikainen et al. 1993b; Priha and 

Smolander 1995; Paavolainen and Smolander 1998; Weslien et al. 2009). Prior studies 

conducted in peatland soils demonstrated that nitrification can be very low (e.g., 

Rangeley and Knowles 1988; Verhoeven 1996; Regina et al. 1996) unless the water 

table depth is lowered permanently by drainage (Martikainen et al. 1995; Nykänen et 

al. 1995; Regina et al. 1996 Aerts and Ludwig 1997). For example Regina et al. 

(1996) measured nitrification in peatland soils and found higher activity in soil 

samples collected from the most fertile drained sites. They found very little 

nitrification in soil samples collected from both the drained and undrained infertile 

peat soils. Several studies have suggested that for high N2O emissions to occur from 

drained peatland soils, the optimal water table depth and soil moisture need to be 

combined with high temperature and a low C/N ratio (Jungkunst et al. 2004; 

Klemedtsson et al. 2005; Ball et al. 2007; Ernfors et al. 2007; Saari et al. 2009).  

 
Fluxes in the drained and undrained plots were higher (13.71 and 14.55 kg N2O−N 

ha−1 yr−1) in 2006−07 than in 2007−08 (1.87 and 2.18 kg N2O−N ha−1 yr−1). Large 

emissions occurred at the beginning of the study, which coincided with fertilisation, 

even though no interaction was observed between drainage and fertilisation. It could 

be possible that fertilisation provided N for nitrification and denitrification. 

Nitrification and denitrification may go on simultaneously within soils with microsites 

of differing soil moisture levels (Davidson 1991; Renault and Stengel 1994), but 
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denitrification relies on the nitrate produced during nitrification (Firestone and 

Davidson 1989). Annual N2O fluxes (8.02 and 8.6 kg N2O−N ha−1 yr−1) measured in 

the drained and undrained plots over the two years of this study are similar to fluxes 

reported for organic soils used for agriculture (Nykänen et al. 1995; Flessa et al. 1998, 

Maljanen et al. 2003b; Regina et al. 2004; Mäkiranta et al. 2007) probably because of 

the effect of fertilisation in 2006−07. For example, Nykänen et al. (1995) found that a 

fen drained for pasture in Finland emitted 8−9 kg N2O−N ha−1 yr−1. Maljanen et al. 

(2003b) measured N2O fluxes from boreal organic soils under different land-uses. 

They found that annual emissions from the cultivated soils varied from 8.3 to 11.0 kg 

N2O−N ha−1 yr−1 which were twice times the N2O (4.2 kg N2O−N ha−1 yr−1) emitted 

from the adjacent forest site. Soil under the drained and undrained plots became net 

sinks for atmospheric N2O in the winter of 2006−07 (Fig. 5.2b) when the ground 

water level was close or above the soil surface. According to Schiller and Hastie 

(1994) and Regina et al. (1996), water saturated soils may consume N2O when 

denitrifiers reduce atmospheric N2O to N2. 

 

Nitrous oxide emissions observed in the drained and undrained plots in the 2007−08 

were lower than in 2006−07 and are close to fluxes reported for boreal and temperate 

forest soils (Zerva and Mencuccini 2005a; Von Arnold et al 2005; Ball et al 2007). 

The reduction in fluxes in 2007−08 could be an indication that high fluxes in 2006−07 

were probably due to the effect of fertilisation. Von Arnold et al. (2005) reported 

emissions of 0.3−0.9 kg N2O ha−1 yr−1 from drained organic coniferous forest soils in 

Sweden. Ball et al (2007) measured fluxes of 0.2−4.7 kg N2O ha−1 yr−1 from several 

Sitka spruce stands of different ages at Harwood Forest close to the present site.  

 

5.4.2 Effect of mounding on N2O flux 

 

Mounds provide elevated planting positions which mitigate against high soil water 

table and improve the survival as well as the growth of planted seedlings. In making 

the mounds, the litter and the organic soil layers are buried beneath the mineral soil 

layers (Smolander et al. 2000; Saari et al. 2004). It has generally been found that soil 

cultivation improves oxygen availability (Del Prado et al. 2006) and increases soil 

temperature (Skiba et al. 1998; Smith et al. 1998) which may increase organic matter 
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decomposition rates. The mixing of the organic layers with the mineral soils during 

soil cultivation may increase N mineralisation (e.g., Brown et al. 2000; Maggiotto et 

al. 2000) and enhance nitrification (e.g., Freeman et al. 1996). However, effects of 

mounding on N2O fluxes are poorly understood.  

 

Nitrous oxide emissions were reduced by mounding in the present study. Mounding 

created three different subsites (e.g. hollows, mounds and undisturbed ground) with a 

different microclimate and organic matter distribution. Nitrous oxide fluxes in the 

undisturbed ground were higher than those from top of the mounds and hollows. 

Large N2O fluxes measured in the undisturbed ground could be related to soil 

moisture conditions, temperature and availability of N which favoured nitrification 

and denitrification (June to August 2006) (e.g., Robertson et al. 1987). There was an 

interaction between mounding and fertilisation, suggesting that fertilisation increased 

fluxes in the undisturbed ground. The mounds and the hollows had low fluxes which 

contributed to low N2O emissions observed in the mounded subplots. The hollows 

were periodically (November to April) flooded with water, resulting in atmospheric 

N2O consumption. Low N2O emissions to net atmospheric N2O uptake has been 

reported in studies conducted in water saturated soils elsewhere (e.g., Regina et al. 

1996; Schiller and Hastie 1996; Jacinthe and Dick 1997; Verchot et al. 1999; 

Johansson et al. 2003; Saari et al. 2009). For example Schiller and Hastie (1996) 

measured a net N2O uptake (−0.18 mg m−2 d−1) from ditches located in drained boreal 

forests sites in northern Ontario. Nitrous oxide consumption in water saturated soils 

may occur through denitrifiers, but probably also through nitrifiers (Robertson and 

Tiedje 1987; Chapuis-Lardy et al. 2007) since denitrification in the dominant process 

in anaerobic conditions. The two processes are closely related to each other and to 

mineralisation, since nitrifiers use NH4
+ derived from mineralisation and denitrifiers 

use NO3
− produced by nitrification. The consumption of N2O in the flooded hollows 

may have occurred in denitrification when atmospheric N2O was reduced N2 

(Blackmer and Bremner 1976; Schiller and Hastie 1994, 1996; Regina et al. 1996; 

Johansson et al. 2003). This study also showed that there was an increase in N2O 

fluxes in the hollows when water inside them evaporated in the period May to 

September 2007, probably because of increased nitrification activity (e.g., Regina et 

al. 1996). Increased nitrification in aerated peat soils may lead to nitrate leaching to 
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the anaerobic layer beneath, thereby enhancing denitrification (e.g., Firestone and 

Davidson 1989; Regina et al. 1996). Occasionally, consumption of N2O took place on 

the top of mounds, probably because of dry conditions caused by the mineral soil on 

the top of mounds or lack of substrate which inhibited nitrifiers. The mineral soil on 

the top of mounds may also have impended oxygen diffusion and depressed soil 

microbial activity and thereby reducing a substrate for both nitrification and 

denitrification. 

 

Annual N2O emissions from undisturbed ground varied from 1.86±0.17 to 26.26±16 

kg N2O−N ha−1 yr−1. Annual N2O emissions from hollows varied from 0.75±0.17 to 

13.59±0.23 kg N2O−N ha−1 yr−1, while emissions from the top of mounds varied from 

1.82±0.27 to 10.01±0.61 kg N2O−N ha−1 yr−1. Nitrous oxide emitted from the 

hollows, mounds and undisturbed ground was higher in 2006−07 than in 2007−08. 

Mounding interacted with fertilisation and the low fluxes observed in 2007−08 may 

be related to reduction in N due to loss as both N2O and N2 in 2006−07. Some of the 

added N may have been taken by plants as NO3
−, a factor which may limit 

denitrification (Duxbury et al. 1982; Wagner-Riddle et al. 1996; Simojoki and 

Jaakkola 2000). In general, plants may lower N2O production and emission by using 

the mineral nitrogen pool. There is also a possibility that N was also leached and 

washed away into drainage ditches, similar to the effects observed in upland forest 

sites (Mannerkoski et al. 2005; Piirainen et al. 2007) and boreal peatland forests 

(Nieminen 1998) after site preparation. 

 

5.4.3 Effect of fertilisation on N2O flux 

 

Fertilisation increased N2O emissions in the present study. This finding agrees with 

results of fertilisation studies conducted under field and laboratory conditions which 

reported high N2O emissions from fertilised soils under different land uses (e.g., 

Brumme and Beese 1992; Matson et al. 1992; Castro et al. 1994; McTaggart et al. 

1994; Neff et al. 1994; Dunfield et al. 1995; Koops et al. 1996; Velthof and Oenema 

1997; Augustin et al. 1998a; Regina et al. 1998; Nykänen et al. 2002; Webb et al. 

2004; Bremer 2006). However, others found no change in fluxes and consumption of 

N2O has also been observed in some studies after N fertilization (Maggiotto et al, 
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2000; Webb et al. 2004; Bremer 2006). Nitrous oxide emissions in the present study 

increased soon after fertilisation because N enhanced denitrification and nitrification 

(e.g., Hénault et al. 1998; Kaiser et al. 1998; Dobbie et al. 1999). Nitrous oxide 

emitted from the fertilised subplots varied from 3−28 kg N2O−N ha−1 yr−1. These 

fluxes are similar to N2O emissions of 1.7−27.6 N2O–N ha−1 yr−1 measured from N-

fertilised ungrazed grassland and arable land at sites distributed across Great Britain 

(Dobbie and Smith 2003). The emissions are also comparable with N2O fluxes of 

10−20 kg N2O−N ha−1 yr−1 reported for fertilised grasslands in Western Europe 

(McTaggart et al. 1994; Velthof and Oenema 1997) and slightly higher than 5.2−9.5 

kg N2O−N ha−1 yr−1 reported for fertilised boreal forest soils (Regina et al. 1998). 

Dobbie et al. (1999) measured soil N2O emissions from intensively managed 

agricultural fields in Scotland over three years and found that annual emissions varied 

widely (0.3–18.4 kg N2O−N ha−1) due to the degree of coincidence of fertilizer 

application and major rainfall events. Maljanen et al (2004) studied soil N2O 

dynamics in boreal organic agricultural soils with different soil characteristics. Soils 

under barley had higher net N2O emissions (8.48 kg N2O−N ha−1 yr−1) than those 

under grass (2.75 kg N2O− N ha−1 yr−1). They observed the highest N2O fluxes 

(23.50 kg N2O–N m−2 yr−1) in bare soils. The observed net emission fluxes in the 

unfertilised treatment varied from a sink (−0.11±0.62 kg N2O−N ha−1 yr) of N2O to a 

net source (0.94±0.16 kg N2O−N ha−1 yr−). The fluxes are close to (0.06−1.50 kg 

N2O−N ha−1 yr−1) reported for a Sitka spruce plantation and unplanted grassland on 

peaty gley soil at Harwood forest (Ball et al. 2007). The soil under the unfertilised 

treatment consumed N2O in the autumn to the winter of 2006, which also occurred in 

the fertilised treatment in the winter. The consumption of N2O occurred when soils 

under the fertilised and unfertilised subplots were water saturated. As discussed in the 

previous sections, some denitrifiers can gain energy by using atmospheric N2O as a 

substrate and, therefore, consumption of atmospheric N2O can occur in water 

saturated soils.  

 

Large N2O emissions from the fertilised subplots were concentrated in a relatively 

short period fluxes fell back to near-background emissions after about 12 weeks and 

followed the seasonal time course in course in temperature. N2O fluxes emitted during 

these period contributed largely to annual emissions in year of this study. Dobbie et 
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al. (1999) and Dobbie and Smith (2003) observed that on average, 77% of the annual 

N2O fluxes from fertilised grassland cut for conservation are emitted within four 

weeks of fertilisation. A similar emission pattern has been reported for fertilised 

grasslands in the tropics (Veldkamp et al. 1998), temperate Western Europe 

(McTaggart et al. 1994; Velthof et al. 1996, Clayton et al. 1997; Velthof and Oenema 

1997; Williams et al. 1998; Dobbie et al. 1999), in arable cropland (Jacinthe and Dick 

1997, Liu et al. 2005) and in forest soils (Regina et al. 1998). For example, Clayton et 

al. (1997) observed large N2O fluxes from fertilised grassland three weeks after 

fertilisation. Liu et al. (2005) measured N2O fluxes from a fertilised maize field in 

northeastern Colorado and found that large N2O emissions occurred in the first two 

weeks after fertilisation and declined to near-background emissions after twelve 

weeks. Bremer (2006) measured soil N2O emitted from a perennial rye grassland soil 

near Manhattan, Kansas. The study reported that fluxes from the fertilised treatment 

were 15 times higher than in the control three days after fertilisation. Flessa et al. 

(1996) found that N2O fluxes from urine and dung patches in a pasture increased after 

10 to 15 days following deposition of urine and dung to soils due to rapid 

mineralisation of organic N in urine and dung to NH4
+.  

 

The N2O emission factor was very high (35%) in the first year of fertilisation. It was 

higher than values (0.4−5.8%) reported for fertilised grassland (Clayton et al. 1997; 

Smith et al. 1998a, b; Dobbie et al. 1999). Large emissions which occurred in the first 

twelve weeks of fertilisation contributed the largest emissions observed in the first 

year of study. The warmer summer of 2006 and available N coupled with favourable 

moisture conditions may have accelerated nitrification and denitrification resulting in 

large N2O soon after fertilisation. Nitrous oxide emissions decreased in year 2 and 

resulted in an emissions factor of 2.7% which is within the range of values reported in 

many studies (Clayton et al. 1997; Smith et al. 1998a, b; Dobbie et al. 1999; Dobbie 

and Smith 2003) and above the Intergovernmental Panel on Climate Change (IPCC) 

default factor of 1.25%. 
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5.4.4 Dependence of N2O flux on environmental variables 

 

The exponential relationship between N2O fluxes and soil temperature observed in 

this study has also been found in forest soils (Brumme 1995, Schindlbacher et al. 

2004; Ball et al. 2007). According to Skiba et al. (1998) and Smith et al. (1998) N2O 

fluxes increase with increasing soil temperature in site a where soil moisture and 

substrate are not liming. The increase in soil temperature coupled with available N 

probably enhanced microbial activity and increased N2O production in this site. 

 

Although soil moisture content is an important determinant of soil microbial 

population and activity (e.g., Linn et al.1984; Skopp et al 1990; Verchot et al. 1999), 

it was not related to N2O fluxes in this site. The lack of dependence of soil N2O fluxes 

on soil water has also been noted for forests soils (Bowden et al. 1990; Henrich and 

Haselwandter 1997; Zerva and Mencuccini 2005a). Fertilisation caused large N2O 

fluxes which declined after twelve weeks and remained close to the level of 

background emissions throughout the study. This may indicate that low N availability 

is limiting nitrification and denitrification in this site. Soil moisture content is 

important in regulating N2O emissions but its significance is more apparent in 

ecosystems where N is cycled rapidly to provide a substrate for nitrification and 

denitrification (e.g., Verchot et al. 1999). An exponential relationship was observed 

between soil water table depth and fluxes in the drained and undrained plots, 

suggesting that increased soil temperature enhanced microbial processes. The 

increased N2O fluxes observed at lower table depth in this study confirm similar 

observations following drainage of flooded peaty soils (Terry et al. 1981, Freeman et 

al. 1993). 

 

5.5 CONCLUSION 

 

This study showed that drainage did not have a significant effect on N2O emissions 

probably because of low soil pH and N availability. It also is possible that drainage 

was not drastic enough to alter enhance N cycling in this site. Mounding decreased 

fluxes and N2O uptake occurred in periodically flooded hollows which may have been 

caused the reduction of N2O to N2 by denitrifiers. Similarly low fluxes occurred on 
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the top of mounds, where N2O uptake also occurred. It is possible that the mineral soil 

on the top of mounds impended oxygen diffusion and prevented nitrification. 

Fertilisation increased N2O emissions in this site, which were concentrated over a 

relatively short period. Large emissions observed across treatments coincided with 

fertilisation indicating that fertilisation was the sources for N2O in this site. The lack 

of relationship between N2O fluxes in the fertilised subplots and soil water content 

and soil water table depth suggest that fluxes in this site were probably dependent on 

substrate (N) availability more than on abiotic factors and soil temperature induced 

microbial activity.  
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Chapter 6 

 

6.1 SUMMARY OF MAIN RESULTS 

 

After two years, drainage had decreased the total C and N concentration in the top 10 

cm soil layer of peaty gley soil, probably because increased soil temperature and 

improved aeration induced soil organic matter decomposition. Fertilisation increased 

the total C concentration in the top 10 cm layer in year 1 of study. The total C and N 

concentration was not affected by mounding. The soil bulk density in the 0−20 cm 

layer was increased by mounding, probably because of soil compaction caused by the 

excavator used to make mounds. Ammonium (NH4
+) was increased by mounding and 

fertilisation in 2006−07. This may have increased plant growth in the fertilised 

subplots in 2006−07, which was also found in the drained plots. In none of the 

sampling occasions was nitrate (NO3
−), pH or microbial biomass C affected by 

drainage, mounding or fertilisation. 

 
Drainage and mounding increased day-time soil temperature and decreased the soil 

moisture content between May and October. Drainage also lowered the soil water 

table depth. Drainage increased soil CO2 emissions in 2006−07 and 2007−08. 

Improved aeration and increased temperature in the drained plots may have made the 

soil aerobic and favourable for microbial and autotrophic respiration. Fertilisation also 

increased soil CO2 fluxes. Soil respiration was not affected by mounding. Soil CH4 

emissions were affected by the three practices, with drainage reducing the fluxes, 

mounding and fertilisation increasing the fluxes. Methane emissions in this site were 

controlled by the water table depth. The changes in soil temperature and moisture 

content observed in the drained and mounded treatment did not affect CH4 fluxes in 

this site. Methane fluxes in the fertilised subplots were related with seasonal changes 

in soil temperature and water table depth, indicating that temperature did not stimulate 

soil microbial activity unless sufficient substrate was made available for CH4-

producing soil microorganisms. 

 

Soil N2O emissions were not affected by drainage, perhaps drainage was not drastic 

enough to stimulate nitrification. It is also possible that nitrification in this site was 
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not stimulated because of low soil pH and inorganic N. Mounding reduced fluxes and 

N2O uptake was observed periodically inside flooded hollows. Nitrous oxide uptake 

may have occurred during the reduction of N2O to N2 by denitrifiers, since the high 

soil moisture levels in soils favours denitrification. N2O uptake also occurred in the 

mineral soil on the top of mounds, perhaps due to dry conditions and lack of substrate 

which affected nitrification. The mineral soil on the top of mounds may also have 

impended oxygen diffusion and depressed the microbial activity and thereby slowing 

nitrification. Fertilisation interacted with mounding and may have increased fluxes in 

the undisturbed ground. Nitrous oxide fluxes were increased by fertilisation. Large 

fluxes occurred soon after fertilisation and were concentrated over a relatively short 

period. Large fluxes which coincided with fertilisation occurred across treatments at 

the start of sampling, indicating that fertilisation was the source of N2O in this site. 

The lack of correlation between N2O emissions and soil moisture and water table 

depth in the fertilised subplots may suggest that N was more important than abiotic 

factors and soil temperature induced soil microbial processes. 

 

6.2 SUMMARY OF MAIN RESULTS BY PRACTICE 

 

Over the two years of study, drainage significantly increased; a) above-ground plant 

biomass, b) soil temperature (T1, T5 and T10), c) soil CO2 fluxes but reduced d) CH4 

fluxes, e) C, N and organic matter concentrations, f) soil water table depth and g) soil 

moisture content(m3 m−3). Mounding significantly increased; a) soil bulk density, b) 

NH4
+ availability , c) soil temperature (T1 and T5) and d) soil CH4 emissions, but 

reduced; e) soil moisture content(m3 m−3) and f) N2O fluxes. Fertilisation increased; a) 

C in year 1 and soil organic matter concentrations, b) soil CO2 fluxes, c) soil CH4 

fluxes, d) N2O fluxes, e) NH4
+ in year 1 and f) above-ground plant biomass. 

 

6.3 TOTAL GREENHOUSE GAS BUDGET OF THE 

PRACTICES, IN ISOLATION OR COMBINED 

 

The total greenhouse gas budget of CO2, CH4 and N2O (t CO2−eq. ha−1 yr−1) was 

evaluated over the two years of study. The emission of 1 kg of N2O to the atmosphere 
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is 298 times more effective than 1 kg of CO2, while 1 kg of CH4 is 25 times more 

effective than an equal mass of CO2 (IPCC 2007). Drainage increased soil CO2 fluxes 

by 22.6 and 32.6% in 2006−07 and 2007−08, respectively (Table 6.1). Drainage 

reduced the CH4−CO2 equivalent emissions by 57.2 and 76.1% 2006−07 and 

2007−08, respectively (Table 6.1). Drainage reduced the N2O−CO2 equivalent 

emissions by 5.7 and 14% in 2006−07 and 2007−08, respectively (Table 6.1). 

Drainage increased the CO2 equivalent emissions by 9.3 and 23.0% in 2006−07 and 

2007−08 respectively.  

 

Mounding reduced CO2 fluxes by 5.3% in 2006−07, but caused an increase of 0.15% 

in 2007−08 (Table 6.1). Mounding decreased the N2O–CO2 equivalent emissions by 

43.5 and 43.3% in 2006−07 and 2007−08, respectively. Mounding increased the CH4–

CO2 equivalent emissions by 33.5 and 57.1% in 2006−07 and 2007−08, respectively. 

Mounding decreased the total greenhouse gas budget by 22.0 and 5.8% in 2006−07 

and 2007−08, respectively. Fertilisation increased soil CO2 fluxes by 8.7 and 5.6% in 

2006−07 and 2007−08, respectively. Fertilisation also increased the N2O–CO2 

equivalent emissions by 26713.8 and 232.2% in 2006−07 and 2007−08, while the 

CH4–CO2 equivalent emissions were increased by 58.8 and 22.3%, respectively. 

When fertiliser was added in 2006−07, N2O fluxes contributed more to the total 

greenhouse budget that CO2. Fertilisation increased the total greenhouse budget by 

146.5% in 2006−07 and 20.3% in 2007−08. Over the two years of study, drainage and 

fertilisation increased the total greenhouse gas budget by 13.1 and 97.9%, while 

mounding caused a reduction of−17.6%. 

 

In the UK site preparation carried out prior to afforestation usually involves drainage 

and mounding using excavators to overcome adverse site conditions and provide a 

favourable environment to increase the survival and early the growth of trees 

(Paterson and Mason 1999; Minkkinen et al. 2008). Nitrogen and phosphorus 

fertilisers are often applied on nutrient poor sites such as moorland and heathland soils 

to ensure crop viability (e.g., Taylor 1991; Minkkinen et al. 2008).  
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The combined effect of drainage plus mounding and drainage plus mounding plus 

fertilisation on the total greenhouse gas budget was calculated over the two years of 

study. These are the only combinations carried out in practice in upland Britain. To 

our knowledge information on the effect of these combinations on the total 

greenhouse gas budget is lacking. Drainage plus mounding increased soil CO2 fluxes 

by 16.4 and 33.8% in 2006−07 and 2007−08, respectively (Table 6.2). Over the two 

years of study drainage plus mounding increased soil CO2 fluxes by 23.3%. Drainage 

plus mounding increased soil temperature and improved aeration both of which have 

the potential to increase the litter turnover and decomposition (e.g., MacDonald et al. 

1999; Niklinska et al. 1999). It seems, therefore, that the effect of increased soil 

temperature and aeration after drainage plus mounding on organic matter and plant 

roots may have increased CO2 emissions. Carbon dioxide fluxes in the drained plus 

mounded plots were higher in 2007−08 than in 2006−07, probably the ditches were 

more effective in 2007−08 and favoured both heterotrophic and autotrophic 

respiration. It is also possible that the organic layers and the mineral soil on the top of 

mounds were mixed in 2007−08 compared to 2006−07 and may have increased 

decomposition due to the fertilisation effect (e.g., Minkkinen et al. 2008). Plant roots 

are an important sources of C in many soils (e.g., Balesdent and Balabane 1996; Puget 

and Drinkwater 2001), and increases in soil temperature and improvement in aeration 

after drainage may have enhanced root growth and autotrophic respiration in this 

study. 

 

Drainage plus mounding reduced the N2O−CO2 equivalent emissions by 46.9 and 

52.3% in 2006−07 and 2007−08, respectively. Over the two years of study, drainage 

plus mounding reduced the N2O−CO2 equivalent fluxes by 47.5%. Drainage plus 

mounding increased soil temperature and improved aeration, but failed to stimulate 

N2O emissions as observed in fertile peatland soils (e.g., Martikainen et al. 1993a; 

Merbach et al. 1996; Augustin et al. 1998b), probably because low pH and inorganic 

N hindered nitrification in the present study site. Drainage plus mounding decreased 

the CH4−CO2 equivalent fluxes by 44 and 63% in 2006−07 and 2007−08, 

respectively. Over the two years of study drainage plus mounding reduced CH4−CO2 

equivalent fluxes by 50.7%. This was expected because drainage plus mounding 

decrease CH4 production in waterlogged peat and increase CH4 oxidation in the 
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aerated surface peat (e.g., Smith et al. 2000; Oleszczuk et al. 2008; Minkkinen et al. 

2008). Aerobic conditions caused by drainage and mounding may have increased CH4 

oxidation in site (Smith et al 2000). Nykänen et al. (1998) studied CH4 fluxes in 

peatland soils in Finland and reported that drainage reduced CH4 fluxes by 30 to over 

100%. Overall drainage plus mounding decreased the total greenhouse gas budget by 

14.9 % in 2006−07, but caused an increase of 15.6% in 2007−08. On average, 

drainage plus mounding reduced the total greenhouse gas budget by 6.9%. 

 

Drainage plus mounding plus fertilisation increased soil CO2 fluxes by 29.6 and 

46.5% in 2006−07 and 2007−08 respectively (Table 6.3). Drainage plus mounding 

plus fertilisation increased soil CO2 fluxes by 36.4%. When organic soils are drained 

and mounded for afforestation the accumulated organic matter becomes available for 

aerobic decomposition, due to increased temperature and aeration, leading to higher 

soil CO2 release rates (Silvola et al. 1996a; Von Arnold et al. 2005). The application 

of N fertiliser in drained and mounded sites may stimulate soil microbial activity and 

increase decomposition and CO2 release rates further. Drainage plus mounding plus 

fertilisation increased the N2O−CO2 equivalent emissions by 5797.6 and 52.7% in 

2006−07 and 2007−08 respectively. On average, drainage plus mounding plus 

fertilisation increased N2O−CO2 equivalent emissions by 1335.6%. Several studies 

demonstrated that drainage and soil cultivation increases N2O fluxes of fertile organic 

soils (Martikainen et al. 1993a, Nykänen et al. 1995; Regina et al. 1996; Kasimir-

Klemedtsson et al. 1997; von Arnold et al. 2005). Drainage had no effect on N2O 

fluxes, while mounding caused a reduction. This result may suggest fertilisation was 

the major source of N2O−CO2 equivalent emissions in the drainage pus mounding 

plus fertilisation (e.g., Ambus et al. 2001; Nykänen et al. 2002; Venterea et al. 2003; 

Wallenstein et al. 2006; Zhang et al. 2008) because N provide a substrate for 

nitrification and denitrification (e.g., Sitaula et al. 1995; Hénault et al. 1998; Kaiser et 

al. 1998; Dobbie et al. 1999). 

 

Drainage plus mounding plus fertilisation reduced CH4−CO2 equivalent fluxes by 

12.3% and 58.5% in 2006−07 and 2007−08, respectively. However, the reduction was 

lower in 2006−07 compared to 2007−08. The effect of drainage and mounding on soil 

CH4−CO2 equivalent emissions in 2006−07 may have been counteracted by N 
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fertilisation which has been found to reduce the activity of CH4 oxidizing soil 

microbes in many ecosystems (e.g., Flessa et al. 1995; Dobbie and Smith 1996; 

Hütsch 1998; Tlustos et al. 1998; Hilger et al. 2000; Reay and Nedwell 2004; 

Suwanwaree and Robertson 2005). Drainage plus mounding plus fertilisation 

increased the total greenhouse budget by 133.4 and 45.0% in 2006−07 and 2007−08, 

respectively. On average, drainage plus mounding plus fertilisation increased the total 

greenhouse budget by 101.8%. 

 

Peatland soils play an important role in the balance of GHGs between soils and the 

atmosphere. In their natural state, peatlands are net C sink (Hargreaves et al. 2003). 

Drainage and afforestation has been one the main land management pressures on 

peatlands. If the water table depth of peatland soils is lowered permanently by 

drainage and afforestation, the accumulated organic matter becomes available for 

decomposition, increasing soil CO2 release rates (Silvola et al. 1996; Lindroth et al. 

1998; Broadmeadow and Matthews 2003; von Arnold et al., 2005).  Hargreaves et al. 

(2003) found that a newly drained peatland (2 to 4 years after ploughing) emitted 2−4 

t C ha−1 yr−1, to the atmosphere. However, as forest stands develop, the NPP of trees 

and forest ground vegetation may compensate for the soil CO2 emissions and a forest 

may become as sink of ~3 t C ha−1 yr−1 at about 4 to 8 years after afforestation 

(Hargreaves et al. 2003), although other sites may be net sources (Lindroth et al. 

1998). Over the two years of the present study, drainage had no effect on N2O 

emissions. Nitrous oxide emissions would be expected to increase when trees are 

planted and draw water from the soil increasing oxidation of organic matter which 

may release N to N2O producing microbes. Several studies have found drained 

organic forest soils to be significant sources of atmospheric N2O depending on 

fertility (Martikainen et al. 1993a; von Arnold et al. 2005). Furthermore, drainage and 

afforestation may lower CH4 fluxes or even turn forest soils to net sinks for 

atmospheric CH4 (Nykänen et al. 1998; .Maljanen et al.2003a; von Arnold et al. 

2005). 

 

In practice forest fertilisation in the UK is not recommended unless it is absolutely 

important (DEFRA 2008), but it is still an important silvicultural operation used for 

first rotation (afforestation) forest stands planted on some very nutrient demanding 
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sites such as upland organic soils. The application of N (150 kg N ha−1) is based on 

the Forestry Commission fertilisation guidelines (Taylor 1991). Although the fertiliser 

was applied soon after drainage and mounding in the present study, in practices the 

guidelines recommend fertilisation on a three years cycle. Fertilisation commences 6 

years after planting until canopy closer at about 10−15 years (Hibberd 1991). Nitrous 

oxide emissions from fertilised forest soils are expected to be high soon after 

fertilisation but at the same magnitude observed in this study. The presence of shading 

from the closing tree canopy may reduce the volatilisation of nitrogen to the 

atmosphere, resulting in efficient use of N by trees and the forest floor vegetation. 

Fertilised plantations tend to grow faster and trees which may lead to C sequestration 

in plant biomass and soil (Aber et al. 1998).  

 

Site preparation for afforestation may affect GHG emissions in many ways as 

observed in the present study. Drainage may initially increase CO2 emission rates of 

peaty gleys soils, although in the long-term drainage and afforestation could be 

beneficial in terms of GHG budget. As the forest mature C will accumulate in trees 

and the forest floor vegetation as well as in the forest soil and can compensate for CO2 

emissions. In some sites the forest may even become a C sink. In addition, the forest 

soil can reduce or even become a net sink for atmospheric CH4 a more potent gas than 

CO2. On the other hand the release of N in from the organic matter may increase N2O 

emission the forest.  

 

6.4 CONCLUSION 

 

Overall, drainage increased the total greenhouse budget, while mounding caused a 

decrease. Fertilisation was the largest contributor to the total greenhouse gas budget. 

Fertilisation was carried out soon after drainage and mounding, although in practices 

it is tending operation (post-planting) carried out after the trees have established 

themselves in their new environment. Therefore caution is needed in interpreting 

these results because the effect of fertilisation may make site preparation practices 

seem like emitting a lot of GHG. This study could probably have yielded high quality 

information if the site was not fertilised. The UK’s Land Use Land-Use Change and 

Forestry (LULUCF) Greenhouse Gas Inventory requires information on GHG fluxes 
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arising in the transition between different land-uses (Milne and Cannell 2005) which 

are published in each year as National Inventory Reports (NIRs). Peaty gley soils hold 

substantial quantities of the terrestrial carbon stocks in the UK and large losses occur 

when they are drained for afforestation. Therefore this result shows that there is 

potential to include GHG fluxes from newly drained and mounded sites in the NIRs. 

However, this may require high quality data from different newly drained planting 

sites for up-scaling. Up-scaling may not only provide an exact amount of GHG lost 

from newly drained sites, but may also help us obtain an estimate based on the current 

knowledge. Therefore more studies on GHG emission and organic matter 

decomposition are needed from newly drained sites. Total CO2 emitted from soil to 

the atmosphere include respiration from soil organisms, plant roots and organic matter 

decomposition. Decomposition studies may give an indication about the amount of C 

lost from newly drained planting sites from organic matter decomposition induced by 

drainage and mounding. However, if similar studies are conducted in the future 

fertilisation should be avoided since it is tending operation  
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APPENDIX 

 

 

Figure 1. Cutting open drainage ditches by an excavator. 

 

 

Figure 2. Dry drainage ditches. 
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Figure 3. Drainage ditches flooded with water. 

 

 

Figure 4. A hollow flooded with stagnant water. 



 202 

 

Figure 5. A cylindrical PVC collar inserted on undisturbed ground. 

 

 

Figure 6. A cylindrical PVC collar inserted in a hollow. 
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Figure 7. Collar and a cylindrical chamber on undistributed ground; a circular rubber 
was used to make a tight seal around collar and chamber. 

 

 

Figure 8 . Collar and a cylindrical chamber in a hollow; a circular rubber was used to 
make a tight seal around collar and chamber. 
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Figure 9. Collar and a cylindrical chamber on a mound hollow; a circular rubber was 
used to make a tight seal around collar and chamber. 

 

 

Figure 10. Collar and a cylindrical chamber and a removable aluminum lid fitted with 
a 3-way stop cock. The lid was tightly clipped to chambers using large clips. 

 

 
 


