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Abstract 
 

Sprawling urban development is a major driving force of global 

environmental change. Its impact on Earth system functions is likely to increase in the 

future when the proportion of the world’s population living in urban areas is expected 

to grow dramatically. Thus, many policymakers are starting to look for ways to 

control sprawl through smart growth policies before it becomes unmanageable. 

However, the mechanisms by which sprawl takes place and the likely impact of smart 

growth on sprawl and on various stakeholders are not yet fully understood. Therefore, 

there is a need to develop a comprehensive methodology for sprawl analysis and its 

containment. 

Consequently, the goal of this dissertation was to provide a research 

framework and methodologies that contribute to the understanding of sprawl 

dynamics and its containment. It arrives at this goal through three analyses. The first 

analysis addresses sprawl and landscape fragmentation in Centre County, 

Pennsylvania through cross-tabulation, identifying the dominant and systematic land 

use transitions in the area and subsequently, the explanatory drivers of urban land use 

location through logistic regression. The second analysis projects future urban land 

use location in Centre County through simulation modeling using the CLUE-S 

modeling framework and includes validation and uncertainty analyses of the 

simulated products. By assessing the price elasticity of residential land demand and 

housing supply, the third analysis evaluates the feasibility of remedying sprawl by 

implementing smart growth policy through land price increases without 

compromising affordability of housing in Centre County. 



 iv

The results of these analyses demonstrate that land use transitions are 

predominantly from agriculture to urban land. The primary explanatory drivers of 

urban land use location in Centre County are soil and topographic factors. The 

validation of the simulation of near future urban land use location is encouraging, 

although sprawl projections show significant temporal decay. The output of the 

sprawl simulation is sensitive to decision rules on the ease of conversion to urban of 

other land use categories and to weights of input parameters. Price elasticity of 

residential land demand is relatively high, thus implying that smart growth policies 

that increase land price are likely to contain sprawl without increasing housing price. 

In sum, the analyses suggest that effective sprawl containment not only calls for a 

comprehensive analysis of local land use dynamics to confirm that sprawl is a 

problem, but also requires that policy makers are aware of the uncertainty inherent in 

sprawl model projections for informed and realistic application of model output in 

their planning policies. To avoid failure of sprawl amelioration measures, 

stakeholders who are liable to feel the effects of these measures and are likely to 

resist their implementation should be identified and incorporated in the policy process 

from its inception. 

 

Key words: urban sprawl, smart growth, affordable housing, explanatory drivers, 

simulation uncertainty, land demand 
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CHAPTER ONE 
 

General introduction 
 
 
 

1.1. Background 

The phenomenon of sprawling urban development is one of the major forces driving 

land use/land cover change in the world. Urban sprawl has been characterized as a 

distinct form of dispersed and inefficient urban growth, haphazard in configuration, 

and highly reliant on the automobile (Hasse and Lathrop, 2003).  The United Nations 

Human Settlement Programme (2004) notes that urban development is proceeding at 

a rapid rate around the world and most metropolitan and urban areas are adding land 

at a much faster rate than they are adding population, resulting in large amounts of 

natural and agricultural lands consumed for urban growth while accommodating 

comparatively small numbers of people considering the amount of land consumed per 

person (Fulton et al., 2001; Hasse, 2004; Lathrop et al., 2006).  

Sprawl refers to a type of spreading suburban development with negative 

outcomes, such as increased commuting time. The Florida Growth Management Plan 

(1993) defines sprawl as an unplanned suburban development allowing land use 

patterns that inflate facility costs and that fail to protect natural resources and 

agricultural lands. Burchell and Shad (1999) specifically define it as the intrusion of 

low-density residential and nonresidential development into rural and undeveloped 

areas. The costs and negative externalities of urban sprawl have been widely 

documented (e.g., Kahn, 2000; Freeman, 2001) and include loss of prime farmlands 

and ecosystems fragmentation. The challenge to planners and environmental 
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managers, therefore, is to balance urban development with the preservation of natural 

resources (Daniels, 1997).  Smart growth is one growth management policy that has 

gained popularity as a viable solution to contain sprawl through its advocacy for 

compact development among other things (Danielsen et al., 1999; Hasse, 2004; Smart 

Growth Network, 2006).  

The term smart growth has been widely adopted to characterize compact 

patterns of development that do not embody the negative characteristics of sprawl 

(Danielsen et al., 1999; Hasse, 2004; Smart Growth Network, 2006). Such programs 

often involve a package of tools such as zoning, comprehensive plans, subdivision 

regulations, development fees, exactions, and infrastructure investments, applied 

together with high density development (Nelson et al., 2002).  Hasse (2004) points 

out that urban growth following the principles of smart growth – e.g., pedestrian-

friendly development, multi-nodal transportation coordination, and urban 

redevelopment – holds the potential to lessen the environmental impacts and social 

costs of sprawling development. Staley and Gilroy (2004) emphasize increase in 

housing affordability and diversity as the core principle of most smart growth 

policies, stressing that low-density residential and commercial development reduces 

the overall quality of urban life through reliance on the automobile, whereas compact, 

higher density land use patterns improve the quality of life through a pedestrian 

lifestyle and provide a wide range of housing choice.  

In contrast, others have argued that urban sprawl generates private benefits 

and that an important cost of smart growth is an increase in the price of housing 

(Segal and Srinivasan, 1985; Conte, 2000; Gordon and Richardson, 2000). Private 



 3

benefits from sprawl can arise from the satisfaction of consumer preferences for more 

socioeconomically segregated communities that are less densely settled and may be 

able to offer lower housing prices (Wassmer and Baass, 2006). Further supporting 

sprawl, Glaesar and Kahn (2004) point to cheaper and larger homes as a benefit. 

Burchell et al. (2000) note that land further from the center of a metropolitan area is 

less expensive, resulting in cheaper housing. In their response to critics of sprawling 

land use patterns in the United States, Gordon and Richard (2000) emphasize that 

Americans’ desires for larger houses and lot sizes are more likely to be met in 

outlying areas. Kahn (2001) notes that sprawl increases housing affordability in 

central cities and suburbs, leading to a reduction of the Black-White housing 

consumption gap. Levine (1999) shows that growth management measures in 

California have accelerated the movement of minorities and the poor from central 

cities. An assessment of the impact of smart growth on housing affordability by 11 

scholars states that it is possible for smart growth to coexist with affordable housing, 

but concludes that further empirical study is necessary before any definitive cause and 

effect statements are possible about the impact of smart growth on housing prices 

(Nelson et al., 2002).  

These diverging views on the disadvantages and benefits of sprawl and of 

smart growth call for a detailed sprawl analysis in an area of interest to determine if 

sprawl is problem and also determine its underlying processes. A trade off analysis of 

the likely impact of smart growth on various stakeholders is essential for effective 

adoption and implementation of smart growth policy. Downs (2005) states that 

successful implementation of smart growth policies requires adopting policies that 
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contradict long-established traditions such as low density living patterns. Therefore, 

effective implementation of smart growth policy requires a better understanding of 

the dominant land use conversions in the landscape in order to help identify the likely 

impact of sprawl on landscape fragmentation and the stakeholders who will be 

affected by implementation of smart growth policies. Smart growth implementation 

results in different opportunities and negative externalities for various stakeholders. 

For instance, real estate owners in the periphery of urban areas would likely be 

disadvantaged by smart growth implementation as the value of their property would 

probably be reduced when development is confined to the city boundary while brown 

fields owners’ property values would be expected to gain. Effective smart growth 

implementation requires that all affected stakeholders be on board, hence to avoid 

low rates of adoption, there is a need to conduct a feasibility analysis of the likely 

impact of smart growth policy on stakeholders prior to its implementation to avoid 

low rates of adoption.  

 Gyourko and Voith (1999) indicate that the impact and desirability of any 

smart growth policy depends on the nature of the elasticity of residential land 

demand. If households have strong preferences for residential land and change their 

land consumption very little in response to a large increase in land price, then smart 

growth policies raising the price of land would have little impact on patterns of land 

use (Pryce, 1999). Furthermore, attempts to change land use patterns would make 

house ownership costly. However, if consumers readily adjust the quantity of land 

they consume in response to changes in price, then smart growth policies that 

moderately change the price of land could have a large impact on land use patterns 



 5

(Voith, 2001). Another important market parameter that could be used to evaluate the 

likely impact of smart growth policies is the elasticity of housing supply. Glaeser et 

al. (2006) find that the elasticity of housing supply determines whether increases in 

economic productivity will create bigger sprawling cities or compact cities with 

expensive housing. 

Consequently, the goal of this dissertation is to provide a research framework 

and methodologies that contribute to understanding sprawl and its effective 

management at a local level. The dissertation also aims to evaluate the feasibility of 

developing affordable housing while pursuing a smart growth policy aimed at 

containing sprawl. The specific objectives of the dissertation are to determine (1) 

major land use transitions at the county scale and (2) sprawl dynamics and its 

underlying processes. Furthermore, the dissertation seeks to evaluate (3) the 

sensitivity of the agreement between the simulated urban location map and the 

reference map to input parameter variation and uncertainty of sprawl modeling output 

and (4) the feasibility of developing affordable housing policy that is consistent with 

smart growth as a move to contain sprawl.  

 
1.2. Case study area  

Centre County, Pennsylvania (Figure 1.1) typifies a growing debate regarding the 

tradeoffs between socioeconomic growth and development and their impacts on the 

landscape. Although it is the fifth largest county in Pennsylvania, two thirds of its 

land area (2887.837 km2) is protected conservation area while, at the same time, the 

land available for development is located in prime agricultural land in the valleys.  

Furthermore, the county has one of the highest median housing values in  
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Figure 1.1. The location of Centre County in Pennsylvania 
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Pennsylvania with a single family housing median price of $156,000 in 2005 and has 

high rating as a retirement destination (Centre County 2005).  

A wide range of land uses and land covers coexist within Centre County, with 

forests and agricultural lands being important components of the landscape. Forests 

are mainly concentrated where topography is steep and land is marginal for 

agricultural purposes, whereas agriculture is concentrated mainly in the fertile 

limestone and shale soils of the valleys (Centre County 2005). Over the years the 

number and size of farms have decreased as the number of rural non-farm residents 

has increased, leading to a loss of 1,618 hectares of prime farmland between 1977 and 

2005 (Goetz et al., 2004). The county is divided into seven planning regions. The 

Centre Region Council of Governments is the planning region that is the most 

urbanized and home to The Pennsylvania State University. The Centre Region 

includes the State College Borough and College, Ferguson, Halfmoon, Harris, and 

Patton townships. This work uses the Centre Region to represent the sub-county level 

or sub-county extent for comparison with the county level or county extent. 

The Mid-State and University Park airports service the county and the 

Keystone Shortway (Interstate 80) runs east-west across the county. This highway has 

greatly facilitated accessibility to major markets for the county’s products by the eight 

motor freight carriers that serve the area. The imminent completion of Interstate 99 is 

likely to increase the accessibility of the county’s products to markets in other parts of 

Pennsylvania and beyond. In addition to these commercial benefits brought by the 

highways to the county, increased ease of commuting by workers to commercial 
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centers such as State College is likely to result in increased conversion of agricultural 

and forest lands to residential use (Centre County 2005). 

Therefore, the competition for land between residential and agricultural uses 

in the valleys and the anticipated housing demand increase makes Centre County a 

good place to study sprawl and its amelioration. Land use decisions in the United 

States, especially in Pennsylvania, are based on jurisdiction, so it is imperative that 

studies on sprawl are carried out at local level where land use decisions are made. 

 

1.3. Structure of the dissertation 

This dissertation is essentially a collection of interconnected papers that will be 

submitted to international peer-reviewed journals for publication. As a consequence, 

the three body chapters (i.e., Chapters 2-4) have individual introductions and 

objectives based on key objectives identified in section 1.1. The chapters contain 

some inevitable overlaps, especially with respect to the data sets. It is also worthwhile 

to note that sprawl dynamics and land use transitions, as well as their impact on 

landscape fragmentation, are analyzed at county and sub-county levels in Chapter 2 to 

evaluate the effect of spatial resolution on patterns and processes of sprawl reported 

in previous studies. Subsequent chapters are analyzed at the county level only. 

Chapter 2 further determines explanatory variables of urban land use location through 

logistic regression. The explanatory variables of urban land use location are used in 

simulation modeling to project urban land use location into the near future. Although 

Chapter 3 deals with sensitivity and uncertainty of sprawl simulation output, it relies 

on validation results from Chapter 2 to determine the uncertainty of that output.  



 9

Chapter 3 determines the uncertainty of sprawl modeling output and its 

sensitivity to variations in input parameters in an attempt to sensitize planners and 

policy makers to the errors inherent in sprawl simulation products. Chapter 4 carries 

out a feasibility analysis of developing affordable housing policy that is consistent 

with smart growth as a measure to contain sprawl in the county. Chapter 5 concludes 

the dissertation with remarks on the implications of the results for sprawl 

management with possible directions for future research.  
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CHAPTER TWO 
 

Urban Expansion in Centre County, Pennsylvania: Spatial Dynamics and 

Landscape Transformations 

 
 

2.1. Introduction 

The 1990 Census showed that for the first time more Americans were living in 

suburbs than in central cities. About one-fifth of the nation’s prime farmland was 

located within metropolitan counties and, when nonmetropolitan counties adjacent to 

metropolitan counties are included, these greater metropolitan areas contain over one-

third of the nation’s prime farmland (Mieskowski and Mills, 1991; Daniels, 1997). 

Farmland and natural lands contribute to flood control, air cleansing, and water 

filtering; those amenities, as well as the inherent societal value of open space, are lost 

when these lands are developed (Nelson, 1992). Therefore, one challenge to land 

resource management in areas where urban development is taking place in prime 

agricultural lands is to achieve compact development that does not degrade these 

natural resources (Couch and Karecha, 2006). Although urban areas make up 14 

percent of the Earth’s land surface area (Grubler, 1994), urban sprawl can cause 

larger changes in environmental conditions than other land uses (Folke et al., 1997; 

Lambin et al., 2001; Fang et al., 2005). Urban development and associated changes in 

landscape composition and pattern set off a cascade of environmental impacts that are 

of growing concern (Alberti, 1999; Bartlett et al., 2000; McKinney, 2002; Nilsson et 

al., 2003). Urban growth can lead to landscape fragmentation resulting in loss of 

habitat and of migration routes for many animal species. These environmental 
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impacts are likely to increase in the 21st century when more than one half of the 

world’s population is expected to be living in urban areas (The United Nations 

Human Settlement Programme, 2004).  

The rapid pace and broad scope of urban growth is stressing the ability of land 

use planners and environmental resource managers to address the cumulative 

degradation of ecosystems (Lathrop et al., 2006). Fang et al., (2005) note that in order 

to keep ecosystems functioning well, it is necessary for environmental researchers, 

managers, and decision makers to understand the spatial dynamics of sprawl. 

Complementing this idea, Gaurs and van Wee (2006) stress that a comprehensive 

exploration of the consequences of urban growth is needed for informed decisions on 

sprawl patterns and its costs. Ichikawa et al. (2006) conclude that an examination of 

future implications of urban development on ecosystems functioning is critical for an 

informed land use planning process to avoid ill-advised and irreversible land use 

decisions.  

Nevertheless, the mechanisms through which sprawl occurs are not well 

understood (Galster et al., 2001; Cutsinger et al., 2005; Wolman et al., 2005; Zeng et 

al., 2005). Hasse (2004) highlights that while substantial research and academic 

discourse have addressed many of the socioeconomic issues related to sprawl, far less 

research has focused on developing concrete methodologies able to identify and 

characterize sprawl. Lopez and Hynes (2003) further point out that lack of a coherent 

methodology to measure sprawl has been a major cause for contention among various 

groups concerned with sprawl because of differences in the definition of sprawl . This 

lack of progress in understanding patterns and processes of urban growth within a 
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landscape is due to lack of consistency in measuring urban land use patterns 

(Cutsinger et al., 2005; Tsai, 2005). A first step toward gaining insight into patterns 

and processes of urban sprawl, therefore, should be an empirical analysis that 

quantifies urban land use patterns and processes through land use change modeling 

(Batty et al., 1999; Wu, 2002; Fang et al., 2005).  

This chapter presents such a step. Specifically, the chapter seeks to determine 

systematic land use transitions at sub-county and county levels with a view of 

determining whether sprawl is a problem in a county. The chapter further seeks to 

determine the explanatory variables of urban land use location within the county and 

project urban land use location to the year 2012. 

 

2.2. Data and Methods 

2.2.1. Data 

Land use/land cover data classified at Anderson level 1 from Landsat TM images of 

the county for 1993 and 2000 were available and used to calibrate and validate the 

simulation model respectively and were obtained from the Centre for Integrated 

Regional Assessment (CIRA), The Pennsylvania State University. Land use maps had 

six land use categories: Urban, Forest, Agriculture, Water, Rangeland and Abandoned 

Mining Sites. These classifications were performed by an experienced analyst from 

the United States Geological Survey for 1993 and 2000, were ground truthed 

extensively, and are considered to be highly reliable. The Water, Rangeland and 

Abandoned categories were aggregated into a single land use category called Others 

for analysis because none of these categories was expected to convert to urban. GIS 
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layers of potential drivers of urban land use location used in the simulation were 

obtained from the Land Analysis Lab, The Pennsylvania State University. The soil 

layer was obtained from the Soil Survey Geographic (SSURGO) database of The 

Natural Resources Conservation Service (NRCS).  The SSURGO database is at a 

scale of 1:24,000 resulting in 30, 000 polygons for Centre County. Each polygon has 

three components, with the dominant component accounting for 90 percent of the 

variance in the polygon (NRCS, 2001). The 30m resolution land use maps were 

aggregated to 100m and 250m for sub-county and county levels, respectively, and the 

same was done to the potential drivers’ layers. Kok et al. (2001) emphasize the 

importance of modeling and validating land use change at multiple spatial resolutions.  

 

2.2.2. Objectives and analysis  

The objectives of the research presented in this chapter were (1) to identify 

systematic, non-random land use transitions in Centre County and (2) to determine 

explanatory variables of urban land use location resulting from these transitions 

through logistic regression. Furthermore, the study sought (3) to use the determined 

explanatory variables of urban land use location to project future urban land use 

patterns based on linear extrapolation of current urban land demand in the county 

based on the assumptions that land transitions to urban is continuous and quantitative 

and (4) to determine the accuracy of the simulated urban land use patterns. From 

these four analyses, the work aimed (5) to determine the effect of scale on 

explanatory variables of urban land use location and on predictive model 

performance. 
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2.2.2.1. Land use transitions analysis 

A cross-tabulation matrix was used to assess land use transitions among the 

categories of Urban, Agriculture, Forest, and Others between 1993 and 2000 at sub-

county and county levels according to two pairs of components: net change and swap, 

and gross gains and losses. In Table 2.1, the rows display the categories of time 1 

(1993) and columns display the categories of time 2 (2000). The notation Pij denotes 

the proportion of the landscape that experiences a transition from category i to 

category j, where the number of categories is J (J = 4). Entries on the diagonal 

indicate persistence, so Pjj denotes the proportion of the landscape that shows 

persistence of category j. Entries off the diagonal indicate a transition from category i 

to a different  

 

Table 2.1. Cross-tabulation matrix for determining land use transitions 

Time 2 Total time 1 Loss 

Ti
m

e 
1 

Category 1 Category 2 Category 3 Category 4   

Category 1 P11 P12 P13 P14 P1+ P1+ – P11

Category 2 P21 P22 P23 P24 P2+ P2+ – P22

Category 3 P31 P32 P33 P34 P3+ P3+ – P33

Category 4 P41 P42 P43 P44 P4+ P4+ – P44

Total time 2 P+1 P+2 P+3 P+4 1  

Gain P+1 – P11 P+2 –P22 P+3 – P33 P+4 – P44   

Total change Loss + Gain      

Swap 2 x Min(Pj+ –Pjj, P+j – Pjj)      

Net change Total change – swap      
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category j. In the Total column, the notation Pi+ denotes the proportion of the 

landscape in the category i in time 1, which is the sum over all j of Pij. In the Total 

row, the notation P+j denotes the proportion of the landscape in category j in time 2, 

which is the sum over all i of Pij.  The gains are the differences between the column 

totals and persistence, whereas the losses are the differences between row totals and 

persistence. Total change is the sum of gains and losses. The amount of swap is two 

times the minimum of the gain and loss, and each grid cell that gains is paired with a 

grid cell that loses to create a pair of grid cells that swap. (Pontius et al., 2004).  

The matrix is analyzed using the chi-square statistic, which compares the 

matrix of observed values to a matrix of expected values. The chi-square computes 

the expected values by assuming that each total, Pi+ and P+j, is given a priori. The 

expected proportion of the landscape that experiences a transition from category i to 

category j due to chance is Pi+ times P+j. The expected proportion of the landscape 

that experiences persistence of category j due to chance is Pj+ times P+j. Equation 

(2.1) gives the formula for the chi-square statistic, where N is the number of grid cells 

in the map. 
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2.2.2.2. Explanatory variables of urban land use location 

Land use is defined by the purposes for which humans exploit the land cover 

governed by the variability in time and space in biophysical environments, 

socioeconomic activities, and cultural contexts that are associated with land use 

change. Therefore, identifying the causes of land use change requires an 

understanding of how people make land use decisions and how various factors 

interact in specific contexts to influence decision making on land use. Decision 

making is influenced by factors at the local, regional, or global scale. Proximate (or 

direct) causes of land use change constitute human activities or immediate actions 

that originate from intended land use and directly affect land cover (Ojima et al., 

1994). They involve a physical action on land cover. Underlying (or indirect or root) 

causes are fundamental forces that underpin the more proximate causes of land cover 

change. They operate more diffusely (i.e., from a distance), often by altering one or 

more proximate causes (Lambin et al., 2003). Underlying causes are formed by a 

complex of social, political, economic, demographic, technological, cultural, and 

biophysical variables that constitute initial conditions in the human-environment 

relations and are structural (or systemic) in nature (Geist and Lambin, 2002). 

Proximate causes generally operate at the local level (individual farms, 

households, or communities). By contrast, underlying causes may originate from the 

regional (districts, provinces, or country) or even global levels, with complex 

interplays between levels of organization. Underlying causes are often exogenous to 

the local communities managing land and are thus uncontrollable by these 

communities. Only some local-scale factors are under the control of local decision 
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makers. An important system property associated with changes in land use is 

feedback that can either accentuate or amplify the speed, intensity, or mode of land 

use change, or constitute human mitigating forces; for example, via institutional 

actions that dampen, impede, or counteract factors or their impacts. Examples include 

the direct regulation of access to land resources, market adjustments, or informal 

social regulations (e.g., shared norms and values that give rise to shared land 

management practices) (Lambin et al., 2003). 

Place-based research followed by systematic comparative analyses of case 

studies of land use dynamics have helped to improve understanding of the causes of 

land use change (Kates and Haarmann, 1992; Wiggins, 1995). These syntheses 

produced general insights on the sectoral causes of land use change and on the mode 

of interaction between various causes. Insights from these sectoral analyses have led a 

unifying theory on drivers of land use change in the form of: 

 

Multiple Causes. Land use change is always caused by multiple interacting factors 

originating from different levels of organization of the coupled human-environment 

systems. The mix of driving forces of land use change varies in time and space, 

according to specific human-environment conditions. Driving forces can be slow 

variables, with long turnover times, which determine the boundaries of sustainability 

and collectively govern the land use trajectory (such as the spread of salinity in 

irrigation schemes or declining infant mortality), or fast variables with short turnover 

times (such as food aid or climatic variability associated with El Nino). Biophysical 

drivers may be as important as human drivers. The former define the natural capacity 
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or predisposing conditions for land use changes. The set of abiotic and biotic factors 

that determine this natural capacity varies among localities and regions. Trigger 

events, whether these are biophysical (drought or hurricane) or socioeconomic (war 

or economic crisis), also drive land use change. Changes are generally driven by a 

combination of factors that work gradually and factors that happen intermittently 

(Lambin et al., 2001).  

 

Natural Variability. Natural environmental change and variability interact with 

human causes of land use change. Highly variable ecosystem conditions driven by 

climatic variations amplify the pressures arising from high demands on land 

resources, especially under dry to sub-humid climatic conditions. Natural and 

socioeconomic changes may operate as synchronous but independent events. Natural 

variability may also lead to socioeconomic unsustainability, for example when 

unusually wet conditions alter the perception of drought risk and generate 

overstocking on rangelands. When drier conditions return, the livestock management 

practices are ill adapted and cause land degradation (Puigdefagas, 1998).  

 

Economic and Technological Factors. At the time scale of a decade or less, land use 

changes mostly result from individual and social responses to changing economic 

conditions, which are mediated by institutional factors. Opportunities and constraints 

for new land uses are created by markets and policies (Lambin et al., 2001).  
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Demographic Factors. At longer timescales, both increases and decreases of a given 

population also have a large impact on land use (Turner, 1999). Institutional Factors: 

To explain land use changes, it is also important to understand institutions (political, 

legal, economic, and traditional) and their interactions with individual decision 

making (Ostrom et al., 1999).  

 

Cultural Factors. Numerous cultural factors also influence decision making on land 

use. Land managers have various motivations, collective memories, and personal 

histories. Their attitudes, values, beliefs, and individual perceptions influence land 

use decisions; for instance through their perception and attitude toward risk (Lambin 

et al., 2003). The above insights on drivers of land use change and discussion with 

Centre County planners formed the basis for selection of the potential drivers of 

urban location evaluated in this dissertation. 

The land use map for 1993 was reclassified by assigning urban land use a 

value of 1, while other land uses were assigned a value of 0.  The reclassified map 

was then used as the dependent variable and the potential drivers as independent 

variables (Table 2.2) in stepwise regression. The variables distance to water networks 

and distance to roads are euclidean distances of the dependent variable (a 100 meter 

squared land parcel at sub-county level and 250 meter squared land parcel at county 

level) to the nearest water line and road. Distance to various townships is the 

euclidean distance of the dependent variable to the center of each of these townships. 

The variables slope and elevation  
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Table 2.2. Explanatory variables of urban land use location 

Variables Explanation (units) 

Population density Inhabitants (km2) 

Elevation Digital elevation model (m) 

Slope Derived from DEM (%) 

Distance from roads (m) 

Distance from water networks (m) 

Distance from sewer networks (m) 

Distances from urban centers (m) 

Soils suitable for agriculture * 

Soils suitable for septic works * 

Zoning * 

*categorical variables 
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are slope and elevation values within each land parcel and the variables soils suitable 

for agriculture and soils suitable for septic works are the suitability ranking of soils 

within each land parcel for agricultural production and septic works based on the 

USDA soil capability classification system. Distances were log transformed before 

analysis to increase normality. 

The problem of using conventional statistical methods, like linear and logistic 

regression, in spatial land use analysis is that these methods assume the observations 

to be statistically independent and identically distributed (Cliff and Ord 1981). 

However, land use data have the tendency to be spatially dependent, a phenomenon 

known as spatial autocorrelation. Spatial autocorrelation may be defined as the 

property of random variables to take values over distance that, due to geographic 

proximity, are more similar or less similar than expected for randomly associated 

pairs of observations (Legendre and Legendre, 1998).  

On the one hand, spatial dependency could be seen as a methodological 

disadvantage because conventional statistics may lead to the wrong conclusions. On 

the other hand, such spatial relations actually provide information on spatial pattern, 

structure, and processes. Thus, spatial dependency contains useful information, but 

appropriate methods must be used to deal with it statistically. The effects of spatial 

dependence on conventional statistical methods are various, including for example 

biased estimation of error variance and overestimation of R2   (Anselin and Griffith 

1988). All the usual statistical tests have the same behaviour, however: in the 

presence of positive autocorrelation, computed test statistics are often declared 

significant under the null hypothesis: negative autocorrelation may produce the 
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opposite effect (Legendre and Legendre, 1998). This error results from the fact that a 

spatially autocorrelated observation carries less information than an independent 

observation because it is partly predictable from its neighbors so a new sample point 

does not bring with it one full degree of freedom (Cliff and Ord, 1981; Legendre and 

Legendre, 1998). Several methods exist that minimize the effect of autocorrelation in 

statistical analysis (Kaluzny et al. 1997; Long, 1998; LeSage, 1999; Anselin, 2002; 

Nelson and Geoghegan, 2002; Polsky, 2004). To reduce the potential effects of 

spatial autocorrelation in this analysis, a random sample of 25 percent of the 

observations (all pixels) was used in the logistic regression (Wassenaar, et al., 2006).  

Model variables were selected by entry testing based on the significance of the 

score statistic, and removal testing was based on the probability of the Wald statistic.  

Probability for entry and removal were respectively set to 0.05 and 0.10. Collinearity 

was accounted for by eliminating the variable with the least significant Wald statistic. 

contribution to the model. (Wassenaar, et al., 2006). The performance of logistic 

regression models was evaluated by the relative operating characteristic (ROC) 

(Pontius and Schneider, 2001). In ordinal least squares regression, the coefficient of 

determination (R2) gives a measure of model fit, but there is no equivalent for logistic 

regression. Instead, the goodness of fit can be evaluated with the ROC method, which 

evaluates the predicted probabilities of certain urban pixels to be located in the same 

location as explanatory variables by comparing them with the observed values over 

the whole domain of predicted probabilities instead of only evaluating the percentage 

of correctly classified observations at a fixed cut-off value. Only variables significant 

at the 1and 5 percent levels of signifance are reported in the results. 
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             2.2.2.3. Simulation of urban land use location 

Many research groups have developed models to simulate and explore land- use 

changes (Sklar and Constanza, 1991; Lambin, 1997; Kaimowitz and Angelsen, 1998; 

Bockstael and Irwin, 2000; Briassoulis, 2000). Differences in modeling techniques 

relate to differences in the purpose and the scale of the study. Explorative models 

(Stoorvogel, 1995) were developed to design alternatives for present land use. 

Derived land use patterns from explorative models represent optimizations of land 

use based on biophysical potentials, sometimes including socioeconomic estimates of 

inputs and goals.  

Land use change models using cellular automata (Engelen et al., 1995) deal 

with scale dependency of the drivers of land use patterns in a deterministic way by 

prescribing the influence of drivers of land use change over a specified distance. The 

relations describing these impacts of neighborhood conditions (i.e., scale 

dependencies) on land use are most often based on expert knowledge. Cellular 

automata models attempt to mimic certain scale aspects, but fail to unravel the system 

properties that cause scale dependencies (Verburg et al., 1999). Another group of land 

use change models (Hall et al., 1995) explore possible changes in land use as a 

function of driving forces. These models provide information about the scope and 

impact of land use change, and are useful to resource planners for identifying areas 

that require priority attention. The CLUE modeling framework (the Conversion of 

Land Use and its Effects; Veldkamp and Fresco, 1996) and its finer scale version, 

CLUE-S, (Verburg et al., 2002), is such a model.  
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The approach used in the CLUE modeling framework to allocate land use 

changes attempts to account for the entire system of complex interactions among 

historic and present land use, socioeconomic conditions, and biophysical constraints. 

The CLUE framework explicitly addresses interactions between land use patterns and 

the scale dependency of spatial drivers of land use change (Verburg et al., 1999). The 

CLUE model is different from models solely based on an empirical analysis of land 

use change (Mertens and Lambin, 1997; Pijanowski et al., 2000) because of its 

explicit attention to the holistic functioning of the land use system, of its capability to 

simulate different land use types at the same time, and of the possibility of simulating 

different scenarios. Kaimowitz and Angelsen (1998), Irwin and Geoghegan (2001), 

and Lambin et al. (2000) note that models that relying heavily upon statistical 

relations between land use and driving factors are frequently criticized for their lack 

of causality. The CLUE model addresses this criticism by selecting spatial drivers of 

land use change based on the theoretical relationships between these spatial drivers 

and land use (e.g., Turner II et al., 1995).  

The main limitation of the model is its inability to simulate land use change 

dynamics in an area without a compiled land use change history. CLUE uses existing 

land use patterns to allocate land use change. The only possible way around this 

limitation is the use of empirical relations derived in an area with very similar 

characteristics.  

CLUE-S differs from CLUE in that it analysis land use change at finer spatial 

resolution such as watersheds or local planning areas while CLUE analysis at courser 

resolutions like country or continental level. CLUE-S is especially suitable for 
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scenario analysis and the simulation of trajectories of local land use change. The 

model can identify critical areas of land use change (hot spots) for different scenarios. 

Scenarios also can be used to evaluate the impact of macro-level changes, such as 

changes in demographic characteristics. Other scenarios can be used to evaluate the 

effects of local level conditions, such as the protection of nature reserves and 

agricultural areas (Verburg et al., 2002). Apart from scenarios, Schneider and 

Pontious (2001) draw attention to the ability of the CLUE-S model to link the 

quantity of change to the location of change as its advantage over other spatially 

explicit models of land use change. 

Therefore, prediction of urban land use location was conducted within the 

CLUE-S modeling framework (Verburg et al., 2002). CLUE-S has two distinct 

modules–a non-spatial demand module and a spatially explicit land use location 

module (Figure 2.1). The non-spatial demand module calculates the area change for 

all land use types in the aggregate (i.e., the sub-county and county levels in this 

chapter). The results from the demand module specify, for each year between 1992 

and 2001, the area covered by the different land use types, which is a direct input for 

the land use location module. Within the land use location module (Figure 2.2), these 

land use demands are translated into land use  
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Figure 2.1. Modules within the CLUE-S model (Verburg et al., 2002). 
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Figure 2.2. Allocation of land use change in the CLUE-S model (Verburg et al.,     
2002). 
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changes at different locations within the study area using a raster-based land use 

change allocation system. Determination of land use location is based upon a 

combination of regression analysis and a set of decision rules regarding the ease of 

land use conversion of different land use categories (Verburg et al., 2002). A sample 

of urban land use location simulations is presented in the results. 

 

2.2.2.4. Validation of urban land use location simulations 

Validation techniques (Pontius, 2000, 2002; Pontius et al. 2004) were used to 

determine the agreement between the 2000 urban land use reference map and the 

2000 simulated urban land use location map. Furthermore, the techniques were used 

to compare the agreement between the 2000 reference map and the 2000 simulated 

map with the null model (i.e., agreement between the 1993 reference map and the 

2000 reference map).  Specifically, the validation technique (a) budgets sources of 

agreement and disagreement between the simulated map and the reference map and 

among location, quantity, and chance, (b) compares the predictive model to a null 

model that predicts pure persistence, and (c) evaluates the goodness of fit at multiple 

resolutions to see how scale influences the assessment.  

Simulation models of land use and land cover change (LUCC) typically 

examine a landscape at initial points in time t0 and t1 and then predict the change from 

t1 to some subsequent point in time t2 in order to evaluate the performance of the 

simulation model. If the predicted map of t2 appears similar to the reference map of t2, 

it is concluded that the simulation model performed well. However, a strong 

agreement between the predicted map of t2 and the reference map of t2 does not 
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indicate that the simulation model provides additional information beyond what 

would be predicted without the model. If there is no simulation model, then the best 

prediction of t2 would probably be the map of t1. Therefore, a null model would 

predict pure persistence (i.e., no change) between t1 and t2 (Pontius et al., 2004). 

Validation of urban land use location was based on the Kappa index, which is used to 

compare the reference map with the simulated map or compares two reference maps. 

Several measures of agreement between two or more maps have been introduced into 

the applied statistics literature. The collection known as Kappa coefficients comes 

from the notion initiated by Scott (1955) that the observed cases of agreement 

between two maps include some cases for which the agreement was by chance alone. 

The Kappa statistic is a measure of accuracy that ranges between 0 (completely 

inaccurate) and 1 (completely accurate) and measures the observed agreement 

between the classification (or simulation) and the reference map and the agreement 

between maps that might be attained solely by chance (Munroe et al. 2002). The 

original form of the definition of a Kappa coefficient is  

 

                                                                                               (2.2)                   

 

where Po is the probability that a pixel will be placed in the same land use category in 

two different maps, while Pe  is the probability that a pixel will be placed in the same 

land use category in two different maps by chance. Therefore, Kappa should be the 

fraction of all pixels not classified the same in two maps by chance (Aickin, 1990). If 

the agreement between two maps is perfect, then Kappa = 1; if the observed 
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proportion of pixels in agreement between two maps is greater than expected 

proportion correct due to chance, then Kappa > 0; if the observed proportion of pixels 

in agreement is equal to the expected proportion agreement due to chance, then 

Kappa = 0; and if the observed proportion in correct agreement is less than the 

expected proportion due to chance, then Kappa < 0.  A variation of the Kappa statistic 

(Pontius 2002) is  

 

                                                                                             (2.3) 

 

where Po is the observed proportion correct, Pc is the expected proportion correct due 

to chance, and Pp is the proportion correct with perfect match between two maps. In 

addition to the standard Kappa index of agreement, Pontius (2000, 2002) defines 

three variations: Kappa for no information (Kno), Kappa for location (Kloc), and 

Kappa for quantity (Kquan). Kno is an overall index of agreement, Kloc is an index that 

measures the agreement in terms of location only and Kquan measures the agreement in 

terms of quantity. According to Pontius (2000), a Kappa value higher than 0.5 can be 

considered “satisfactory” for land use change modeling. Similarly, Landis and Koch 

(1977) characterize agreement as follows: values > 0.75 are very good to excellent, 

values between 0.4 and 0.75 are fair to good, and values of 0.4 or less indicate poor 

agreement. 
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2.3. Results 

Tables 2.3 and 2.4 show land use transitions as proportions of the landscape at sub-

county and county levels while Tables 2.5 and 2.6 show area transitions between 

different land use categories at sub-county and county levels for the period 1993-

2000. In Tables 2.3 and 2.4, cells at the intersection of 1993 land covers (columns) 

and 2000 land covers (rows) represent either the percentage of the landscape 

converted from one land cover category in 1993 to another in 2000 or the percentage 

of a category that persisted between 1993 and 2000. The bold numbers in the 

diagonals represent the percentage of the landscape that remained in the same 

category between 1993 and 2000; a bold number elsewhere is the percentage of the 

landscape that converted from one category in 1993 to another in 2000. The numbers 

in italics are the proportion of the landscape in each land use transition that would 

have been obtained if land use change in Centre County was random. The numbers in 

parentheses are the difference between observed land use transitions and those that 

would be expected in a random process. The numbers in brackets are the numbers in 

parentheses divided by the numbers in italics. Therefore, the numbers in parentheses 

and brackets are proxy measures for systematic land use transitions. Row totals are 

the proportions of the landscape occupied by each land use category in 1993, whereas 

column totals are the proportion of the landscape occupied by each land use category 

in 2000. Land gain of each land cover category between 1993 and 2000 as a 

percentage of the landscape is the difference between column total and persistence; 

land loss is the difference between row total and persistence. Total change in area 

occupied by each category is the sum of loss and gain. Swap is  
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         Table 2.3. Land use transitions at the sub-county level  
                        (percent of landscape) 

2000 land cover Total 1993 Loss 

19
93

 la
nd

 c
ov

er
 

Urban Agriculture Forest Others   

Urban 15.39 
15.39 
(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

15.39 
15.39 
(0.00) 
[0.00] 

0.00 
0.00 

(0.00)
[0.00]

Agriculture 1.54* 
0.39 

(1.15) 
[2.90] 

32.39 
32.39 
(0.00) 
[0.00] 

0.00 
1.13 

(-1.13)
[-1.00]

0.00 
0.02 

(-0.02) 
[-1.00] 

33.93 
33.93 
(0.00) 
[0.00] 

1.54*
0.44 

(1.10)
[2.50]

Forest 0.29 
0.16 

(0.13) 
[0.81] 

0.00 
0.31 

(-0.31) 
[-1.00] 

49.41 
49.41 
(0.00) 
[0.00] 

0.18* 
0.01 

(0.17) 
[17.00] 

49.89 
49.89 
(0.00) 
[0.00] 

0.48 
0.48 

(0.00)
[0.00]

Others 0.00 
0.03 

(-0.03) 
[-1.00] 

0.00 
0.06 

(-0.06) 
[-1.00] 

0.17* 
0.08 

(0.09) 
[1.13] 

0.62 
0.01 

(0.62) 
[620.00]

0.79 
0.17 

(0.62) 
[3.60] 

 

0.17 
0.17 

(0.00)
[0.00]

Total 2000 17.22 
15.97 
(1.25) 
[0.08] 

32.39 
32.76 

(-0.37) 
[-0.01] 

49.58 
50.62 
(-1.04)
[-0.02]

0.81 
0.03 

(0.78) 
[26.00] 

100.00 
100.00 
(0.00) 
[0.00] 

2.19 
2.19 

(0.00)
[0.00]

Gain 1.83* 
0.58 

(1.25) 
[2.20] 

0.00 
0.37 

(-0.37) 
[-1.00] 

0.17 
1.21 

(-1.04)
[-0.86]

0.19* 
0.03 

(0.16) 
[5.33] 

2.19 
2.19 

(0.00) 
[0.00] 

 

               *significant at ρ < 0.01 
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         Table 2.4. Land use transitions at the county level (percent of landscape) 
 

2000 land cover Total 1993 Loss 

19
93

 la
nd

 c
ov

er
 

Urban Agriculture Forest Others   

Urban 4.61 
4.61 

(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

4.61 
4.61 

(0.00) 
[0.00] 

0.00 
0.00 

(0.00) 
[0.00] 

Agriculture 0.32* 
0.02 

(0.30) 
[15.00] 

19.09 
19.09 
(0.00) 
[0.00] 

0.00 
0.29 

(-0.29) 
[-1.00] 

0.00 
0.01 

(-0.01)
[-1.00]

19.41 
19.41 
(0.00) 
[0.00] 

0.32* 
0.41 

(-0.09)
[-0.22]

Forest 0.06 
0.06 

(0.00) 
[0.00] 

0.00 
0.24 

(-0.24) 
[-1.00] 

72.56 
72.56 
(0.00) 
[0.00] 

0.28* 
0.04 

(0.24) 
[6.00] 

72.89 
72.89 
(0.00) 
[0.00] 

0.34 
0.34 

(0.00) 
[0.00] 

Others 0.00 
0.03 

(-0.03) 
[-1.00] 

0.00 
0.12 

(-0.12) 
[-1.00] 

0.59* 
0.45 

(0.14) 
[0.31] 

2.49 
2.49 

(0.00) 
[0.00] 

3.09 
3.09 

(0.00) 
[0.00] 

0.60 
0.60 

(0.00) 
[0.00] 

Total 2000 4.99 
4.72 

(0.27) 
[0.06] 

19.09 
19.45 
(-0.36) 
[-0.02] 

73.15 
73.30 

(-0.15) 
[-0.002]

2.77 
2.54 

(0.23) 
[0.09] 

100.00 
100.00 
(0.00) 
[0.00] 

1.26 
1.26 

(0.00) 
[0.00] 

Gain 0.38* 
0.11 

(0.27) 
[2.45] 

0.00 
0.36 

(-0.36) 
[-1.00] 

0.60 
0.74 

(-0.14) 
[-0.19] 

0.28* 
0.05 

(0.23) 
[4.60] 

1.26 
1.26 

(0.00) 
[0.00] 

 

              *significant at ρ < 0.01 

 

 

 



 34

 

 

 

 

     Table 2.5. Land use transitions at the sub-county level (hectares) 

2000 land cover Total 1993 Loss 

19
93

 la
nd

 c
ov

er
 

Urban Agriculture Forest Others   

Urban 5983.2 0 0 0 5983.2 0 

Agriculture 600.57 12594.06 0 0 13194.63 600.57

Forest 114.66 0 19215.45 70.65 19400.76 185.31

Others 0 0 66.78 243.00 309.78 66.78 

Total 2000 6698.43 12594.06 19282.23 313.65 38888.37  

Gain 715.23 0 66.78 70.65   

Total change  715.23 600.57 252.09 137.43   

Swap 0 0 133.56 133.56   

Net change  715 600.57 118.53 3.87   
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Table 2.6. Land use transitions at the county level (hectares) 

2000 land cover Total 1993 Loss 

19
93

 la
nd

 c
ov

er
 

Urban Agriculture Forest Others   

Urban 13379.31 0 0 0 13379.31 0 

Agriculture 931.95 55440.63 10.8 0 56383.38 942.75 

Forest 170.37 7.65 210748.05 799.83 211725.9 977.85 

Others 1.08 0 1728.14 7244.55 8973.77 1729.22

Total 2000 14482.71 55448.28 212487 8044.38 290462.4  

Gain 1103.4 7.65 1738.94 799.83   

Total change 1103.4 950.4 2716.79 2529.05   

Swap 0 15.3 1955.5 1599.66   

Net change 1103.4 935.1 761.29 929.39   
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obtained by multiplying by 2 the minimum value of either loss or gain. Net change is 

the difference between total change and swap. 

Ninety-eight percent of the landscape in Centre County persisted between 

1993 and 2000 (Table 2.4) and all land use transitions are systematic except Forest to 

Urban at the county level (Tables 2.3 and 2.4). The proportion of the landscape under 

urban land use increased from 15.39 to 17.22 percent, an area increase of 715 

hectares at the sub-county level mainly from agricultural land use loss (Tables 2.3 and 

2.5). In contrast, increase in urban land use at the county level was only 0.5 percent of 

the landscape, an area increase of 1103.4 hectares (Tables 2.4 and 2.6). Area under 

forest land use increased by 118.53 and 761.29 hectares at sub-county and county 

levels, respectively, from the Others land use category. Forest land use experienced 

positional swap with the Others land use category of 133.56 and 1955.2 hectares at 

sub-county and county levels, respectively (Tables 2.5 and 2.6).  

Table 2.7 shows explanatory variables of urban land use location in Centre 

County. Beta values are logistic regression standardized coefficients of the 

independent variables. Slope has a negative effect on urban land use at the sub-county 

level but not at the county level. In contrast, soil suitability for agricultural production 

is a positive determinant of urban land use location at sub-county and county levels, 

while soil suitability for septic works is a determinant of urban land use location at 

the sub-county level.  
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 Table 2.7. Beta values of the explanatory variables of urban land use location 
 

Sub-county County 

Beta Constant ROC Beta Constant ROC 

Ex
pl

an
at

or
y 

va
ria

bl
e 

 1.510 0.88  1.21 0.90 

Distance to water networks -0.001      

Slope -0.045      

Elevation -0.006      

     Distance to roads    -0.001   

Distance to State College borough -0.001      

Distance to Bellefonte township    -0.002   

Distance from Milesburg township    0.001   

Distance to PortiMatilda township    0.001   

Soils suitable for agriculture 0.080   0.152   

Soils suitable for septic works 0.397      

All variables significant at ρ < 0.01 
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The simulated 2000 urban land use location is similar to the 2000 reference 

map of urban land use location. Nevertheless, the future urban land use location 

increase in Centre County is identifiable (Figures 2.3 and 2.4). Therefore, the 

explanatory variables of urban location explain urban land use location in the county 

satisfactorily. The null model performs better than the simulation model in all aspects 

but Kquantity at the sub-county level, while in contrast the simulation model performs 

better than the null model at the county level (Tables 2.8 and 2.9) with 39 percent of 

the landscape showing location agreement between the 2000 reference map and the 

simulated map of 2000 land use location and 42 percent of the landscape showing 

location agreement between the 1993 and the 2000 reference maps at the sub-county 

level (Figures 2.5 and 2.6). Thirty percent of the landscape shows location agreement 

between the 2000 reference map and the simulated map of 2000 land use location 

(Figure 2.7); 20 percent of the landscape shows location agreement between the 1993 

and the 2000 reference maps at the county level (Figure 2.8). Therefore, for the study 

period, the 1993 reference map would have been a good proxy of 2000 urban land use 

patterns at the sub-county level, whereas the 2000 simulated urban land use location 

at the county level would have been a better representation of 2000 urban land use 

location.  
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Figure 2.3. Urban land use location simulation results at the sub-county level  
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Figure 2.4. Urban land use location simulation results at the county level  
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Table 2.8. CLUE-S and null model validations at the sub-county level 

Index 2000 reference map and 2000 simulated map 2000 reference map and 1993 reference map 

Kno 0.94 0.97 

Klocation 0.93 0.99 

Kquantity 0.99 0.94 

Kstandard 0.93 0.96 
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Table 2.9. CLUE-S and null model validations at the county level 

Index 2000 reference map and 2000 simulated map 2000 reference map and 1993 reference map 

Kno 0.72 0.61 

Klocation 0.76 0.49 

Kquantity 0.76 0.88 

Kstandard 0.58 0.44 
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Figure 2.5. Agreement and disagreement between the 2000 reference map and 
the 2000 simulated map at the sub-county level. 
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Figure 2.6. Agreement and disagreement between the 2000 and 1993 reference 
maps at the sub-county level 
 

 

 

 

 

 

 

 



 45

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f L

an
ds

ca
pe Disagreement due to quantity

Disagreement due to location

Agreement due to location

Agreement due to quantity

Agreement due to chance

 

Figure 2.7. Agreement and disagreement between the 2000 reference map and 
the 2000 simulated map at the county level 
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Figure 2.8. Agreement and disagreement between the 2000 and 1993 reference 
maps at the county level 
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2.4. Discussion 

Land change, predominantly agriculture to urban, was only 2 percent of the Centre 

County landscape for the period 1993-2000, involving 1864.33 hectares. This result is 

consistent with findings by Mertens and Lambin (2000), Geoghegan et al. (2001), 

Schneider and Pontius (2001), and Chen et al. (2002) who reported high persistence 

and limited change in land cover/land use change studies. The result further supports 

the assertions by Yang (2002), Yang and Lo (2002), and Pontius et al. (2004) that 

even fast-growing urbanizing areas, such as the Atlanta Metropolitan Area of the 

United States, have experienced only 25 percent of land change to urban over the last 

decades although most of the change was located in prime agricultural areas. Urban 

land gain from agriculture was one of the dominant land use transitions in Centre 

County, which is consistent with findings by Hill (1986), United Nations (1995), and 

Verburg et al. (1999), among others. Doos (2002) notes that urban expansion is an 

ongoing threat to farmland because urban areas tend to have been founded in 

agricultural areas. 

Although land change in Centre County involves a small proportion of the 

landscape, it can lead to irreparable ecological damage depending on the fragility of 

the locations of such changes. During the period 1993-2000, forest land use 

underwent positional swap of 1955.2 hectares with the Other land use category likely 

due to logging and reforestation (e.g., new forest plantation appears as grassland 

when the trees are seedlings). While positional swap does not necessarily involve 

permanent loss of forest land cover, it may have ecological significance. On the one 

hand, if mature trees used by birds for nesting or by other animals for shelter are 
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logged and replanted, it may be difficult to restore the former ecological balance even 

when the forest regrows. On the other hand, if the logged mature trees are not in 

ecological sensitive areas, then their replacement by regeneration or afforestation in 

other parts of Centre County could be beneficial for carbon sequestration, especially 

if the logged wood is to be used for long term carbon storage such as housing 

construction or furniture because young trees sequester carbon at a faster rate than 

mature trees. 

 Most of the land use changes in Centre County take place in the valleys 

where prime agricultural land is located. Apart from the inevitable loss of agricultural 

output and loss of employment in agricultural related industries, replacement of 

agricultural lands by the built environment leads to an increase in runoff due to the 

increase in impervious surfaces, which in turn results in a reduction of aquifer 

recharge and an increase in flood risk. Agricultural land cover is a longstanding part 

of the Centre County landscape, therefore, its replacement is likely to have an impact 

on the organisms that have adapted to this environment over the centuries. 

Furthermore, agricultural land cover is an integral part of the county’s rural 

landscape, which is a tourist attraction. In these and in other ways, loss of agricultural 

land to urbanization has an impact on the socioeconomic and natural fabrics of Centre 

County.  

The results demonstrate that biophysical factors such as topography, soil 

suitable for agricultural production and septic works, and proximity to population are 

the major explanatory variables of urban land use location in the county. This finding 

agrees with the assertion by Pontius and Spencer (2005) that whatever the variation in 



 49

economic, social, and legal explanatory variables across time, topography and 

geologic characteristics are supreme in determining land use location. Lambin et al. 

(2003) observe that biophysical explanatory variables define the natural capacity or 

predisposing conditions for land use change in a given locality.  

Smith and Reynolds (2002) also note that, for any given human-environment 

system, a limited number of explanatory variables are required for predicting the 

general trend in land use. Here, soil constraints emerged as one of the main 

explanatory variables of urban land use location, which agrees with reviews by Wood 

and Porro (2002) and Rudel (2005). Platt (1985), Nelson (1992) and Levia (1998) 

found that much of the land lost to urbanization is in prime agricultural land located 

on coastal plains and river valleys. In Centre County, however, there were differences 

in explanatory variables of urban land use location at sub-county and county levels: 

topography had a negative effect on urban land use location at the sub-county level, 

but had no effect at the county level. The differential effect of topography on urban 

land location at sub-county and county levels might be due to apparent differences in 

demand for developable land at these scales. For example, the sub-county level might 

appear to have higher apparent demand for developable land such that construction 

takes place at higher elevation. In contrast, at the county level, the course resolution 

might make it appear that no construction takes place at higher elevation because of 

low developable land demand. 

Simulated patterns of urban land location in Centre County for 2000 are 

visually similar to the 2000 urban land use reference map. This similarity is further 

supported by validation results that show high Kappa indexes between the reference 
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maps and the simulated maps, although the null model is better than the simulation 

model at the sub-county level. Better performance of the null model when compared 

to the simulation model at the sub-county level is consistent with findings by 

Geoghegan et al. (2001), Schneider and Pontius (2001), Brown et al. (2002), Chen et 

al. (2002) and Lo and Yang (2002), all of whom reported greater agreement between 

the reference map of t1 and reference map of t2 than the agreement between the 

predicted map of t2 and the reference map of t2.   

The relationship between urban development and agricultural land use in 

Centre County is evident, with soil suitability for agricultural use emerging as one of 

the strong explanatory variables of urban land use location, thereby implying that 

developable land in Centre County is mainly located within agricultural land. 

Therefore, a policy that intends to contain sprawl in Centre County should include 

agricultural land owners in the planning for successful implementation. Although 

agricultural easements have been used to protect agricultural land from urbanization 

in Centre County with some success, agricultural land owners are likely to be averse 

to other policies that seek to protect agricultural land through designating their lands 

as no development zones because of the likely negative effect on their lands’ value. 

 The null model outperforms the simulation model at the sub-county level, 

where a significant proportion of the landscape underwent change when compared to 

the county level. While the inability of the simulation model to capture land change at 

this spatial extent could be excused because land change was a small proportion of 

the landscape over the study period, the simulation model’s failure to capture 

landscape persistence that is well represented by the null model is unfortunate 
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because land planning would benefit from accurate sprawl simulation models – 

especially in areas undergoing complex land use transitions. Therefore, this failure of 

the simulation model at a finer scale is a drawback in the quest for applying sprawl 

simulation to land use planning. However, the simulation model could be used at 

coarser resolution to identify areas likely to experience sprawl in the near future, to be 

followed by detailed empirical analysis of the identified areas.  

 

2.5. Conclusions 

The purpose of this chapter was to determine major land use transitions within Centre 

County through cross-tabulation in an attempt to determine whether urban 

development is the cause of land use change. The chapter further sought to determine 

explanatory variables of urban land use location through logistic regression and 

subsequent projection of urban land use patterns into the near future through 

simulation modeling using the CLUE-S modeling framework.  

The results showed that land use change and landscape fragmentation in 

Centre County are dominated by transitions from agricultural land use to urban use 

and by swaps between Forest and Others land use categories. Biophysical factors, 

such as soil suitability for agricultural production and topography, are key 

determinants of urban land use location in Centre County. The CLUE-S model was 

able to simulate urban land use location satisfactorily at the county level, although 

simulations at the sub-county level were less satisfactory.  

Although land use transitions involved only 2 percent of the Centre County 

landscape, their ecological consequences are likely to be significant as they are 
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dominated by urbanization. Land transitions in the county involve agricultural to 

urban land, therefore, the involvement of agricultural land owners in land use 

planning policy formulation for sprawl containment is crucial. Furthermore, multi-use 

zoning, which encompasses green belts within residential and industrial areas, may be 

a suitable land planning measure to ameliorate sprawl in Centre County as it 

addresses, in one geographical location, interests of those intending to convert their 

agricultural lands to residential use and those opting to remain in farming.  
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CHAPTER THREE 

Uncertainty Evaluation in Sprawl Simulations: Towards Policy Relevant Land 

Change Modeling 

 
 
3.1. Introduction 

Over the last decade, land use planning has drawn increased attention because of the 

growing negative impacts of urban sprawl, such as consumption of prime agricultural 

land and open space (Hanink and Cromley, 2005). Although urban areas make up 14 

percent of the Earth’s land surface area (Grubler, 1994), the loss of land to sprawl 

cannot be ignored, for urban sprawl causes greater environmental impacts than other 

land uses such as increase in flood occurrence, and changes in energy balances of the 

earth surface (Heilig, 1994; Folke et al., 1997; Lambin et al., 2001). The focus on 

urban sprawl in land use planning comes also from its complex driving forces and 

their interactions (Gimblett et al., 2001; Ligtenberg et al., 2001; Cheng and Masser, 

2003; Weber, 2003). Thus, there is great need to understand sprawl and its driving 

factors.  

There is also a need to improve models of land use change. Veldkamp and 

Lambin (2001) highlight the importance of land use change modeling as a planning 

tool for projecting alternative land use pathways into the future, whereas Fang et al. 

(2005) note that the first step in finding solutions to ecological and human dimensions 

problems of urban sprawl is through dynamic land use change modeling and 

simulation. The importance of modeling and simulation in sprawl studies is further 
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emphasized by Clarke and Gaydos (1998), Batty et al. (1999) and Wu (2002). 

Klostermann (1999) underscores the importance of dynamic spatial urban models in 

assessing future growth and creating planning scenarios. Crosetto et al. (2002) agree 

and point out that politically and environmentally sensitive decisions on land use are 

increasingly based on information derived from spatial models.  

Land use and land cover change models can only be as accurate as the 

knowledge and data from which they are produced (Fang et al., 2005). Lunetta et al. 

(1991) conclude that remotely sensed data, which are increasingly employed in land 

use change modeling, contain uncertainty and error related to the sensor systems and 

image processing software. Errors in spatial modeling and simulation may also occur 

during initial tracing of boundaries (Thappa and Bossler, 1992; Youcai and Wenbao, 

1997; Burrough and McDonnell, 1998). Secondary error and uncertainty can enter 

during subsequent data processing when changing between vector and raster formats 

(Congalton, 1997). Conversion quality and boundary representational accuracy 

depends highly on the cell size of the resulting digital raster map. Rae et al. (2006) 

note that large cell size used during geoprocessing and subsequent modeling can lead 

to some features being “lost.” Morris (2003) underscores the problems inherent in 

querying features that exhibit partial membership such as land cover categories. Other 

processing errors occur during geoprocessing to create secondary layers and in 

buffering features (Veregin, 1989; Congalton, 1997; Morris, 2003). The influence of 

uncertainty in spatial inputs on spatial modeling predictions is therefore a cause for 

concern (Hansen et al., 1999; Elith et al., 2002).  
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Lanter and Veregin (1992) find that while the visual output of GIS and 

simulation models is compelling to the audience, it does not always include 

information on reliability and uncertainty. This shortcoming can be critical because 

most land use planners are unaware of the uncertainty inherent in land use change 

model products (Stoms et al., 1992; Hunter et al., 1995; Heuvelink, 2002). 

Consequently, land planning decisions based on misinterpreted or erroneous land use 

change model output can be costly due to their irreversibility (Norton and Williams, 

1992). Ultimately, uncertainty and error in model output lead to inappropriately high 

or low confidence in the results, which can harm the land use planning decision 

making process (Foody and Atkinson, 2002; Rae et al., 2006). Pontius and Spencer 

(2005) further argue that land use change modeling can either facilitate or hinder the 

decision making process depending on how scientists present the results.  

Based on this background, the purpose of this chapter is to evaluate 

uncertainty in sprawl simulation output. Specifically, the chapter seeks to determine 

the accuracy of the CLUE-S model in simulating urban land use location and the 

temporal decay of these simulations. Furthermore, the chapter seeks to determine the 

sensitivity of urban land use location simulation output to variation in input 

parameters within the CLUE-S modeling framework.  

 

3.2. Data and Analysis 

3.2.1. Data 

As in Chapter 2, the land use maps for 1993 and 2000 used for simulation model 

calibration and validation, respectively, were obtained from CIRA. Again, the land 
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use maps had six land use categories (Urban, Forest, Agriculture, Water, Rangeland 

and Abandoned mining sites) and the Water, Rangeland and Abandoned mines 

categories were aggregated into a single land use category called Others for analyzing 

land use transitions. GIS layers of potential drivers of urban land use location used in 

the simulation were obtained from the Land Analysis Lab. The 30m resolution land 

use maps were aggregated to 250m and the same was done to the potential drivers’ 

layers. 

 

3.2.2. Objectives and Analysis 

There were three objectives of the research presented in this chapter. The first was to 

determine the accuracy of simulated urban land use location maps; the second was to 

estimate the temporal uncertainty in urban land use location simulations. The third 

objective was to determine simulation output sensitivity to variations in model input 

parameters. Some of the information given in the following subsections appeared in 

Chapter 2, but is reproduced here to clarify the presentation. 

 

3.2.2.1. Simulation and validation of urban land use location 

Simulations of urban land use location were carried out using the CLUE-S model 

(Verburg et al., 2002). Explanatory variables for urban land use location were 

determined through logistic regression, with urban land use as the dependent variable 

and potential drivers of urban location as independent variables (see Table 2.2, p.13). 

To address the stability inherent in most land use systems, each land use type was 

given a weight (elasticity for change) depending on its likelihood of conversion to 
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urban use; this likelihood was based on information from county planners and 

literature (Verburg et al., 2002) . The relative elasticity ranges between 0 (easy to 

convert) and 1 (difficult to convert). The higher the defined elasticity, the more 

difficult to convert the concerned land use type to urban use. Demand for urban land 

use was based on linear extrapolation of the 1993-2000 trends. 

Validation techniques (Pontius, 2000, 2002) were used to determine the 

agreement between the 2000 reference map and the 2000 simulated map. The 

agreement between the 2000 reference map and the 2000 simulated map was then 

compared with the agreement between the 1993 reference map and 2000 reference 

map to determine if CLUE-S is better than using the current urban land use map in 

predicting future urban land use location (Pontius et al., 2004).  

 

3.2.2.2. Uncertainty analysis 

The method of Pontius and Spencer (2005) was used to determine the decrease in 

simulation certainty with time based on simulation run for each year (i.e., 2000, 2001 

2012) as follows: 

 

Ftm =A+{[1-A]exp [Bm (t-Tm)]}                                                                               (3.1)  

 

where Ftm is the agreement between the reference map and a prediction map that has 

zero disagreement due to location. A is the horizontal asymptote as time approaches 

infinity for agreement between the reference map and a prediction map that has zero 

disagreement due to location. 
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−
−
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AVm

1
ln ∆m                                                                                                 (3.2) 

 
 
Equation (3.2) defines Bm as a negative number such that Ftm equals Vm at time Tm + 

∆m.  Vm is the interpolation value for time Tm + ∆m for run m, where m > 1. Vm is set 

equal to the agreement observed in run m-1 between the reference map and a 

prediction map that has zero disagreement due to location, given the disagreement 

due to quantity for run m-1 at the validation time of run m-1. Vm is in the interval [0, 

1] and equation (3.2) requires that A<Vm; therefore, Bm < 0. Consequently, the factor 

in curvy brackets of equation (3.1) approaches zero as time progresses from Tm to 

infinity, thus Ftm approaches A as time progresses. If Vm ≤ A, Ftm should be set to A 

for all t. 

 

Dgtm=Cgm+{(Ygm–Cgm) exp [Bm (t - Tm)]}                                                                (3.3) 

 

where Dgtm is the agreement between the reference map and a prediction map that 

distributes the quantities of the predicted categories uniformly in space at resolution g 

for time t from run m; Cgm is the expected agreement between the reference map for 

time Tm and a simulated map due to chance in terms of quantity and location; and Ygm 

is the interpolation value for time Tm at resolution g for run m, where m > 1. Cgm does 

not change with time, but grows larger as the temporal resolution becomes coarser. 

Dgtm decays to Cgm according to equation (3.3). 
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m H
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Tt ln                                                                                             (3.4) 

 

where Kgtm is the Kappa statistic that indicates agreement in terms of location 

between the reference map and the prediction map at resolution g for time t from run 

m; and Hgm is the interpolation value for expected Kappa of location statistic at 

resolution g for run m at time Tm + ∆m. 

 

 Egtm=Dgtm+[(Ftm-Dgtm)Kgtm]                                                                                     (3.5) 

 

where Egtm is the agreement between the reference map and the prediction map at 

resolution g for time t from run m. The Kappa statistic for run m decays from one to 

zero as time progresses from Tm to infinity, according to equation (3.4). Hgm is the 

interpolation value for time Tm + ∆m at resolution g of run m. Hgm is set equal to the 

observed Kappa statistic in the comparison between the reference map and the 

prediction map for the validation at the resolution g of run m-1. Equation (3.4) 

requires that Hgm >0. If Hgm ≤ 0, then Kgtm should be set at 0 for all time t.  

 

3.2.2.3. Sensitivity analysis 

Sensitivity of the urban land use location simulation to input parameters and decision 

rules was analyzed by varying the regression coefficients of the explanatory variables 

of urban land use location one at a time. Sensitivity of simulation output to decision 

rules was analyzed by varying elasticity values of the different land uses that convert 

to urban use. Those values were obtained through discussion with the Centre County 
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Office of Planning and Community Development. Only the effect of agricultural land 

elasticity on sprawl simulation output is given in the results because the conversion of 

agricultural to urban land is the dominant and systematic land use transition in the 

county. 

 

3.3. Results 

The simulated 2000 urban land use location map shows considerable similarity to the 

2000 urban land use location reference map (Figure 3.1); because of the low 

proportion of the landscape that experienced urbanization over the period, there is 

minimal visual difference between the 1993 and the 2000 reference maps and the 

2000 simulated map. Nevertheless, validation results show higher agreement between 

the 2000 reference map and the 2000 simulated map than between the 1993 and the 

2000 reference maps (Table 3.1). This result is further supported by a 30 percent 

location agreement between the 2000 reference map and the 2000 simulated map of 

land use location as compared to a 20 percent location agreement between the 1993 

and the 2000 reference maps (Figures 3.2 and 3.3). Although the differences in 

agreement between the reference maps and between the 2000 reference map and the 

simulated map may not be significant, they can have profound effects on ecosystem 

functioning depending on the fragility of the areas involved. 

The certainty of urban land use location projected into the near future 

decreased from 45 percent of the landscape in 2000 to 16 percent in 2012 because 

error in location simulation increased (Figure 3.4). The agreement between the 2000 

simulated urban land use location map and the 2000 reference map increased as the  
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  Figure 3.1. Urban land use location simulation results  
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Table 3.1. CLUE-S simulation and reference map validations 

Index 2000 reference map and 2000 simulated map 2000 reference map and 1993 reference map 

Kno 0.72 0.61 

Klocation 0.76 0.49 

Kquantity 0.76 0.88 

Kstandard 0.58 0.44 
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Figure 3.2. Agreement and disagreement between the 2000 reference map       
and the 2000 simulated map 
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Figure 3.3. Agreement and disagreement between the 1993 and 2000 reference 
maps  
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Figure 3.4. Temporal decay in the simulation certainty of urban location 
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ease of converting other land use categories to urban use decreased and reaches a 

maximum elasticity of 0.6. The response in the agreement between the two maps to 

variation in agricultural land elasticity is highest between 0.5 and 0.6 (Figure 3.5), 

implying that the ease of agricultural land conversion to urban is about 0.6. 

Agreement in location between the 2000 simulated map and  
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     Figure 3.5. Klocation response to variations in the elasticity of land uses 

 

the 2000 reference map showed greater sensitivity to variation in weights of slope, of 

soils suitability for agricultural, and of septic works. Elevation and slope variables 

had greater effect on location agreement between the 2000 simulated map and the 

2000 reference map at low weights but less effect at high weights, whereas the effect 

of soils suitable for agriculture and soils suitable for septic works on location 

agreement between the two maps increased with increase in their weights. Variation 
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in weights of distance to State College and distance to water networks had no effect 

on location agreement between the 2000 simulated map and the 2000 reference map 

(Figure 3.6). 
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Figure 3.6. Klocation response to variations in the explanatory variables weights 
 

 

3.4. Discussion 

The simulation model (CLUE-S) simulated urban land use location with a Kappa 

location value of 0.76, which is consistent with findings by Kok et al., (2001) and 

Pontius et al. (2007). The certainty of the urban land use location projection 

decreased with time from 45 of the landscape percent in 2000 to 16 percent in 2012; 

this result is consistent with findings by Paladino and Pontius (2004) who reported 

temporal decay in simulation certainty of 21 percent over a 26 year period. The result 
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further supports the obvious assertions by Pontius and Batchu (2003), Pontius et al. 

(2003), and Pontius and Spencer (2005) that prediction accuracy of land use change 

location degrades as one predicts farther into the future. The model output is sensitive 

to elasticity settings and weights of explanatory variables of urban land use location, 

which is consistent with findings by Verburg et al. (2002) and Wassenaar et al. 

(2006).  

The ability of the simulation model to project future urban land use location at 

the county level is encouraging. However, the 29 percent temporal decay in the 

projection certainty of land use location over the 11 year period makes the usefulness 

of simulation modeling as a useful tool in land use planning questionable. Most land 

use planning decisions are irreversible once implemented; therefore, a margin of error 

of such magnitude is unacceptable because it can have serious environmental and 

social consequences. This conclusion suggests the need to report error margin in 

sprawl simulation output so that planners and decision makers are well informed in 

their application of simulation products to real world problems. Effective 

implementation of sprawl amelioration measures requires that future land use be 

projected well into the future, e.g., 10 years for tactical planning where the objective 

is to understand sprawl in areas already facing the problem, and 20 years for strategic 

planning where the aim is to identify the future locations of sprawl. CLUE-S is not 

suitable for application in either of these land use planning objectives in Centre 

County because its projection certainty for urban land use location in 10 years is only 

16 percent and likely to be even worse for a 20 year projection.  
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Simulated land use location simulation is sensitive to variation in the elasticity 

of agricultural land, particularly between 0.5 and 0.6. County planners estimated the 

elasticity of agricultural land to be between 0.6 and 0.7, which is in agreement with 

the result, thereby suggesting that improper calibration of the land use system for a 

given area could lead to inappropriate conclusions from the sprawl simulation 

exercise. Inappropriate calibration of the ease with which the other land use 

categories convert to urban use could lead to higher sprawl projections in the case of 

low elasticity values or low sprawl projections with the use of high elasticity values. 

This finding implies that input from local planners and other stakeholders is 

indispensable in any sprawl modeling exercise.  

Simulation output shows sensitivity to variability in the weights of 

explanatory variables of urban land use location, with greater impact on urban 

location of such variables as soils and slope. This finding underscores the need to 

allocate more resources to collecting and processing data for those variables with 

higher impact on urban land use location. Preparation of the explanatory variables 

involves some geoprocessing procedures, which are notorious for error propagation. 

This result suggests that the sensitivity of the modeling output to the variability in 

weights of the various explanatory variables might be a proxy measure of the model 

sensitivity to input error. To understand the contribution of input error to overall 

simulation output error, error generated during the geoprocessing of each explanatory 

variable should be stated. 
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3.5. Conclusions 

The purpose of this chapter was to determine simulation accuracy and uncertainty in a 

model of sprawl for Centre County generated by the CLUE-S modeling framework.  

CLUE-S was able to simulate sprawl location in the county, but the certainty of 

sprawl location projections decreases with time significantly. Sprawl simulation has 

inherent uncertainty that can be attributed to error in the input parameters and to 

limitations in our understanding of land use systems. Uncertainty in sprawl simulation 

suggests that modelers should report levels of uncertainty with their simulation output 

because, on the one hand, if land use planners and decision makers have too much 

confidence in sprawl simulation, output that shows greater sprawl could lead to the 

adoption of unjustified extensive and expensive urban growth management policies. 

On the other hand, if decision makers have too little confidence in sprawl models 

showing greater future sprawl, they are likely to engage in weaker policies to curb 

future sprawl, which could have severe socioeconomic and environmental 

consequences. Reporting uncertainty with other simulation output provides decision 

makers with a platform on which to make more informed land use decisions.  
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CHAPTER FOUR 
 

An Evaluation of Land and Housing Markets in Pennsylvania: 

A Prerequisite for Developing Effective Smart Growth Policies 

 
 

4.1. Introduction 
 
There is a growing concern that current development patterns dominated by sprawl 

are not in the best long-term interest of cities, suburbs, small towns, rural 

communities, and the wilderness (Hasse, 2004; Wassmer and Baass, 2006). Though 

supportive of growth, many communities question the practice of abandoning 

infrastructure in the central city, only to rebuild it in the suburbs. Furthermore, the 

social costs of the mismatch between new employment locations in the suburbs and 

the available workforce in the central city are an issue of contention within these 

communities. The wisdom of leaving behind brownfields in older communities and 

then converting prime agricultural lands and open space at the suburban fringe into 

the built environment has also come under scrutiny by many communities (Ewing, 

1997; Brueckner, 2000).  

Planning authorities across the United States have advanced growth 

management policies such as smart growth to address sprawling urban development. 

These growth management policies are mostly driven by theoretical concepts of 

urban planning and practice and therefore lack a rigorous assessment of their possible 

impacts and unintended consequences (Staley and Gilroy, 2004). Nevertheless, the 

negative impacts of growth management policies on households’ quality of life, 

including housing affordability are likely to be significant.  Smart growth policy 
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adopts housing affordability as its principle goal, arguing that compact high density 

land use patterns result in a range of housing choices at affordable prices (Burchell et 

al., 2000). There is a limited comprehensive analysis of the real-world impacts of 

growth management policies that exists although some studies have shown that 

growth management policies can reduce housing affordability through housing price 

increase that limit the supply of new housing units (Conte, 2000; Gordon and 

Richardson, 2000). 

Consequently, the purpose of this chapter is to determine land and housing 

market dynamics in Centre County. Specifically, the chapter seeks to determine 

elasticity of residential land demand and housing supply with a view to forming an 

opinion on the likely impact on housing affordability of smart growth policies that 

aim at increasing residential land price. 

 

4.2. Data and Methods 

4.2.1. Data 

Economic and demographic time series data from 1990 to 2004 formed the basis of 

land and market dynamics analysis. These data include inflation adjusted house price 

appraisal from the Office of Federal Housing Enterprise Oversight (OFHEO) and 

interest rates from the Federal Reserve Board. Median household income and 

population are from the U.S. Census Bureau. Annual potential household size was 

derived by dividing the population by 2.4, which is the median household size in the 

county (Centre County Planning Commission, 2005). The Bureau of Economic 

Analysis provided gross domestic product (GDP) as a percentage change from the 
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preceding year. New house building permits and property values for both single and 

multifamily housing came from the U.S. Census Bureau. Annual residential land 

supply for single family housing was calculated by multiplying the number of 

buildings obtained from building permits for new construction by 4,046.9 m2, which 

is the median lot size for single family housing in the county. Land supply for 

multifamily housing was obtained by multiplying the number of new buildings by 

16,187.5m2, which is the median lot size for multifamily housing in the county 

(Centre County Planning Commission, 2005). Due to lack of data, land value for new 

construction was assumed to be 10% of the property value (Jonathan and Davis, 

2004), although this assumption probably underestimates the price of land in the most 

urbanized areas and overestimates it in the most rural areas.  

 

4.2.2. Analysis 

Two objectives of this chapter were (1) to determine the drivers of residential land 

demand and supply in Centre County through multiple linear regression and (2) to 

estimate the elasticities of land demand and supply through regression coefficients 

that compare land price and land sales. Furthermore, the study sought (3) to 

determine the drivers of housing demand and supply in the county through multiple 

linear regression and (4) to estimate the elasticity of housing supply through 

regression coefficients that compare construction of new housing units and house 

price. Table 4.1 shows dependent and independent variables used in the regression  
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Table 4.1. Variables for estimating residential land and housing market dynamics 
 

Dependent variables 
 Land price (demand) Land sales (supply) House price (demand) House construction 

(supply) 
Interest rate Interest rate Interest rate Interest rate 

GDP GDP GDP GDP 
House price House price Income House price 

Income Income Land sales Income 
Land sales Land price House construction Land sales 

House construction House construction Household number Land price 

In
de

pe
nd

en
t v

ar
ia

bl
es

 

Household number Household number Land price Household number 
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analyses. Only variables significant at the 1 and 5 percent levels of significance are 

reported in Tables 4.2-4.5. Time-series graphs were used to explore the correlations 

between land price and land sales and between land sales and new housing 

construction. All regressions were estimated using SPSS software version 13.0. 

 

4.3. Results 

Land prices (Figure 4.1) showed considerable growth over the study period, doubling 

during the fifteen years. Prices fell in four years (1991, 1996, 1997, and 2001) but 

rose in all others. Price rises were particularly strong in 1995 and 2004. Land sales, in 

contrast, displayed more variation, with sales falling in five years during the period 

and the 2002 peak value being more than double the 1994 low (Figure 4.2). 

Exceedingly strong growth in sales took place from 1999 to 2002, but was followed 

by sharp declines in 2003 and 2004. Although land sales in 2004 were roughly 30 

percent greater than sales in 1990, the volatility of the market does not necessarily 

suggest overall sales growth over the 15 years. Construction of new housing units 

(Figure 4.3) displayed a similar trend to land sales, with construction falling in five 

years during the period and the 2002 peak value being more than double the 1994 

low. Strong construction took place from 1999 to 2002, but was followed by steep 

declines in 2003 and 2004. Like sales, construction in 2004 was about 30 percent 

greater than in 1990, although there is no evidence of an overall increase in 

construction of new housing units over the 15 years. House sales more than doubled 

for the period 2000-2002 and remained high until 2004, after which there is a slight 

decline (Figure 4.4). 
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Figure 4.1. Land price for single family housing construction 
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Figure 4.2. Land sales for single family housing construction 
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Explanatory variables for land demand (Table 4.2) were land sales and house 

price, with land sales having a negative effect on land demand and house price having  

 

 

 

 

Table 4.2. Explanatory variables for residential land demand 

Single family housing Multifamily housing 

Beta Constant R2 Beta Constant R2

Ex
pl

an
at

or
y 

va
ria

bl
e 

 2.355* 0.980  3.132** 0.839 

Land sales -1.504**   -1.424*   

House price 2.113**   0.927*   

**significant at p < 0.01, *significant at p < 0.05 
 

 

a positive effect. Price elasticities of residential land demand for single and 

multifamily housing were 1.504 and 1.424, with a model fit of 0.98 and 0.83, 

respectively. Comparatively, explanatory variables for residential land supply (Table 

4.3) were house price, land price, house construction and interest rate. Land price and 

interest rate had a negative effect on land supply, but house price and house 

construction had a positive effect. The model fit for the explanatory variables of 

single and multifamily residential land supply was nearly 1.00 and 0.95, respectively. 

House demand (Table 4.4) was explained by land sales and price, with both having a 

positive effect on it; model fit approached 1.00 and 0.94 for single and multifamily  
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Table 4.3. Explanatory variables for residential land supply  

Single family housing Multiple family housing 

Beta Constant R2 Beta Constant R2

Ex
pl

an
at

or
y 

va
ria

bl
e 

 1.052** 0.995  0.235** 0.947 

House price 0.767**      

Land price -0.351**   -0.468*   

House 
construction 

0.488**   0.876**   

Interest rate    -0.153*   

**significant at p < 0.01, *significant at p < 0.05 
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Table 4.4. Explanatory variables for housing demand 

Single family housing Multiple family housing 

Beta Constant R2 Beta Constant R2

Ex
pl

an
at

or
y 

va
ria

bl
e 

 0.007 0.996  0.003 0.939 

Land sales 0.685      

Land price 0.464   0.305   

All variables significant at p < 0.01 
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housing, respectively. Explanatory variables for house construction (Table 4.5) were 

house price and land sales with a positive effect and land price with a negative effect. 

Price elasticities of new housing unit supply were 1.425 and 0.559 for single and 

multifamily housing, respectively, while model fit for single family housing was 0.99 

and 0.96 for multifamily housing.  

  

 

 

 

Table 4.5. Explanatory variables for housing supply 

Single family housing Multi family housing 

Ex
pl

an
at

or
y 

va
ria

bl
e Beta Constant R2 Beta Constant R2

House price 1.425 4.445 0.987 0.559 1.371 0.961 

Land price -0.667      

Land sales    0.464   

All variables significant at p < 0.01 
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4.4 Discussion 

The findings of this study tend to be consistent with some of the results reported in 

the literature, but not with others. Price elasticity of residential land demand is 1.504 

and 1.424 for single and multifamily housing, respectively, indicating that a 10 

percent increase in land price would reduce land consumption by 15 and 14 percent in 

these two housing sectors. The result is consistent with findings by Voith (2001), but 

higher than older findings by Muth (1964), McDonald (1981), and Thorsnes (1997). 

Explanatory variables of residential land demand in the county are land sales and 

house price. Although the impact of proximity to utilities, such as water and sewer 

networks on land demand was not evaluated, lots closer to utilities are likely to be 

more expensive when compared to those outside the networks. The same applies to 

service centers, such as schools and health facilities. For example, schools within 

State College Area School District are regarded as some of the best in the country, 

thus land prices are likely to be high within its school district boundaries because of 

the desire by buyers to be located in the district. Nevertheless, there are likely to be 

spatial land price differences within the district, with lots in high density 

neighborhoods having lower demand as compared to those with low density housing.  

The impact of these spatial variables on land demand, at least in Centre County, is 

likely to apply in a similar way to housing demand because housing and land are 

interconnected.  

The price elasticity of residential land supply is 0.351 and 0.468 for single and 

multifamily housing, respectively, implying that a 10 percent increase in price of land 

leads to increases of 4 and 5 percent in residential land supply. These elasticities are 
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consistent with findings by Pryce (1999). However, price elasticity of residential land 

supply does not always reflect the true situation of the land and housing market 

dynamics in a given location because developers play a major role in land supply 

through, among other mechanisms, holding undeveloped land without construction 

until they deem that housing prices will increase more, thus creating artificial land 

shortage. 

The analysis also finds that house prices exhibit a positive relationship with 

land sales, supporting findings by Jonathan and Davis, (2004) who observe that land 

price accounts for most of the variation in house price because land prices are more 

volatile than the price of construction materials. Land price has a negative effect on 

housing construction, supporting the assertion by Muth (1971) that land should be 

treated as an input in house production, but contradicts the argument by Alonso 

(1964) that households value residential land for reasons other than as input to 

housing production. Price elasticity of house supply is 1.425 and 0.559 for single and 

multifamily housing, respectively. These elasticities mean that a 10 percent increase 

in the price of a new housing unit results in 14 and 6 percent increase in construction 

of new housing units. The result for multifamily housing is consistent with those 

reported by de Leeuw and Ekanem (1971), Bramley (1993), and Pryce (1999), while 

the result for single family housing is consistent with work reported by DisPaquale 

and Wheaton (1994), Peng and Wheaton (1994), and Blackley (1999).   

Although elasticities are not strictly comparable across studies, they provide 

an informative reference for understanding how the land and housing market in 

Centre County compares to other local markets and therefore, contributes to the 
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development of theories of residential land markets at local level. Variations in land 

and housing elasticities between places are attributable mainly to differences in urban 

form and land use regulation (Green et al., 2005). Saks (2005) and Glaeser et al. 

(2005) note that in some places housing supply has become inelastic because of 

restrictive zoning and other land use regulations.  Generally, places with stringent 

land use policies have low supply elasticities of housing, while those with relaxed 

regulatory environments have high elasticities. However, places with slow growth 

tend to have low supply elasticities of housing, but they might have less stringent land 

use and development regulations (Green et al., 2005). The price elasticity for single 

family housing in Centre County is relatively high, implying that housing supply is 

not constrained in the county. 

 

4.5 Conclusions 

The purpose of this chapter was to determine the price elasticity of residential land 

demand and housing supply in order to evaluate the likely impact of smart growth 

policies on housing affordability in Centre County. Price elasticity of land demand 

was determined through multiple linear regression with house price as the dependent 

variable and land sales as one of the independent variables. For price elasticity of 

housing supply, new house construction was the dependent variable and house price 

was among the independent variables.  

House price had a positive effect on land demand while land sales had a 

positive effect on housing supply, emphasizing the interconnectivity of land and 

housing in Centre County. However, the price elasticity of residential land demand is 
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comparatively high, implying that smart growth policies that aim to control sprawl 

through an increase in land price could achieve lot size reduction with a moderate 

price increase. High price elasticity of land demand means that potential homeowners 

respond to a small increase in land price by significantly decreasing their desire for 

large lot size. Land price is a component of the overall house price, so smart growth 

in Centre County is unlikely to lead to an increase in house price. It is possible, 

therefore, for smart growth policies to coexist with affordable housing in Centre 

County. When land price increases, it appears that consumers would respond by 

substituting large lot sizes for other goods and services. Therefore, the increase in 

land price would not lead to hardship because consumers in the county do not appear 

to have a strong attachment to large lots.  
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CHAPTER FIVE 

Conclusions 

 

5.1. Summary and Conclusions 

The goal of this dissertation was to provide a research framework and methodologies 

that contribute to the understanding of sprawl dynamics and its containment. In the 

preceding chapters, an analysis of sprawl and landscape fragmentation in Centre 

County was presented, thereby allowing the identification of the dominant land use 

transitions in the area. The analysis further identified future urban land use location 

through simulation modeling, followed by validation and uncertainty analysis of the 

simulated products. Finally, the feasibility of remedying sprawl without 

compromising affordability of housing in Centre County was evaluated. 

No projections of the amount of land lost to sprawl in the near future was 

performed here because rates of land use change are often driven by macroeconomic 

factors that are remote in space and time (Lambin et al., 2001). Instead, new insights 

into future sprawl were provided by relating urban land use location variability with 

its drivers. Because the presence of sprawl suggests that urban areas consume land at 

a faster rate than they are adding population, population increase alone is not a 

sufficient condition for explaining the spatio-temporal dynamics of sprawl. Chapter 2 

presented the spatial variability of urban land location and its explanatory variables in 

Centre County, underscoring the fact that sprawl forecasting that does not consider 

the natural capacity of the landscape is inappropriate for reliable assessment of the 

likely impact of sprawl on local ecological integrity. The resulting simulation maps 
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provided a means to provoke stakeholder awareness of sprawl severity in Centre 

County because information on sprawl is often nonspatial. Consequently, this 

dissertation adds a spatial component that makes it possible to evaluate the gravity of 

sprawl in terms of hectares lost to urban development, but also with regard to the 

fragility and importance of the ecosystems in which it takes place. Therefore, the 

analysis provides a tool to help in the environmental impact assessment of sprawl.  

Evaluation of the uncertainty in sprawl simulation output and of the sensitivity 

of the output to variation in weights of the explanatory variables of urban land use 

location was presented in Chapter 3. The results caution against overreliance and 

overconfidence in sprawl simulation output. Model performance decreased as sprawl 

projections moved forward in time, suggesting a limit on the temporal resolution from 

which sprawl prediction can practically be determined. Simulation output showed 

differential sensitivity to weights of explanatory variables and sensitivity to decision 

rules regarding the ease of conversion to urban of the various land uses, implying that 

more effort and resources should be allocated to collecting and processing those input 

parameters that have greater impact on the output. The inherent error propagation in 

geoprocessing, which was a major component of preparing GIS layers used in this 

analysis, calls for careful interpretation of sprawl simulation output and avoidance of 

causal statements. Thus, products of sprawl simulation should not be used lightly 

when applied to land use planning; instead, they should be used cautiously because 

their production involves substantial uncertainties and assumptions. However, sprawl 

simulation is an indispensable tool for reconnaissance surveys where the objective is 

to identify sprawl locations within a planning area.  
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The feasibility for the development of affordable housing policy that is 

consistent with smart growth policy to curb sprawl was addressed in Chapter 4. The 

analysis adds to the literature that argues that smart growth and affordable housing 

policies are compatible. The empirical analysis indicated that potential homeowners 

will respond significantly to an increase in residential land price by decreasing plot 

size, which results in no significant change in house price. Therefore, smart growth 

implementation is not likely to counteract affordable housing in Centre County and, 

therefore, have a chance to succeed.  

In sum, the three analyses that comprise this dissertation suggest two 

important conclusions. First, effective sprawl containment not only calls for a 

comprehensive analysis of local land use dynamics to confirm that sprawl is a 

problem, but also requires that policy makers are aware of the uncertainty inherent in 

sprawl model projections for informed and realistic application of model output in 

their planning policies. Second, to avoid failure of sprawl amelioration measures, 

stakeholders who are liable to feel the effects of these measures and are likely to 

resist their implementation should be identified and incorporated in the policy process 

from its inception. 

  

5.2. Limitations 

This study, like previous ones, indicates that land change is a small proportion of the 

landscape, and therefore a full understanding of its dynamics requires analysis over 

many years. However, suitable land cover layers were available only for a seven year 

period, which limits the scope of the results. Land use/land cover classification based 
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on satellite images is notorious for high rates of classification errors, so metadata for 

these maps should report information on classification methods and accuracy. In this 

dissertation, metadata associated with the land cover maps did not report this 

information, thus increasing the uncertainty of the simulation outputs.  Although the 

choice of potential drivers of urban land use location was based on literature and 

consultation with planners in the county, some socioeconomic drivers such as income 

could not be obtained at the spatial resolution of analysis due to privacy issues. 

Moreover, the simulation model could not handle spatial data layers at their original 

resolution of 30 meters, thus necessitating aggregation of these layers to 100 and 250 

meters to capture sub-county and county levels, respectively. This aggregation led to 

the loss of some layers, such as minor roads. In addition, econometric analysis for the 

feasibility of affordable housing consistent with smart growth was not possible at the 

sub-county level because county planners were not able to share the required data, 

citing privacy issues.  

Land use decisions in Pennsylvania are made at local level, but often made at 

the county level throughout much of the United States. Consequently, the county 

analytical scale used in this thesis is not as representative of land planning authorities 

in Centre County as it would be in other parts of the country because in Pennsylvania 

land planning takes place at scales finer than the county level. 
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5.3. Possible future work 

This study highlighted the impact of sprawl on landscape fragmentation, which 

ultimately affects ecosystem functioning. Therefore, future research could focus on 

the impact of sprawl on ecosystem functioning. For instance, landscape changes can 

alter freshwater aquatic ecosystems by changing lateral fluxes of water and materials, 

in turn leading to feedbacks from these freshwater systems. Different ecosystems may 

respond to sprawl in different ways, however, so that ecosystem-specific analyses are 

essential. While natural feedbacks to Earth system result from relatively slow, 

directional changes in ecosystem physiology, anthropogenic land cover changes such 

as sprawl can exceed natural thresholds and lead to irreversible changes to ecosystem 

functions. With sufficient progress in land change modeling, sprawl impacts on 

ecosystems at local scales could be up-scaled to the regional level and ultimately 

applied in Earth system models to simulate global-scale impacts of sprawl. 

The results of this research signify the importance of understanding patterns 

and processes of land use change as a prerequisite for the formulation of measures to 

ameliorate sprawl. Furthermore, the results suggest the desirability of carrying out a 

feasibility analysis to investigate the likely impact of smart growth policies on various 

stakeholders through land and housing market dynamics analysis, in this case 

potential homeowners, to minimize implementation stagnation. The analysis could 

benefit from an evaluation of the impacts that spatial variables such as proximity to 

service centers and utility networks have on land and housing demand. This 

dissertation falls short of evaluating the likely impact of smart growth policies on the 

value of homes, and the value of peripheral lands, such as those used for agriculture. 
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Homeowners and land owners are likely to resist any policy they perceive as harmful 

to current and future values of their property. Developers play a crucial role in 

residential land and housing demand and supply dynamics by “sitting” on land 

without construction until housing prices are favorable. As a result, the land and 

housing market is not self-regulating, but is greatly influenced by developers, thus 

necessitating their involvement in any policy process aimed at containing sprawl 

without increasing housing prices. Therefore, future research could include an all-

encompassing trade-off analysis to evaluate benefits and disadvantages of smart 

growth policies to potential homeowners, current homeowners, developers, and land 

owners at local scales.  
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