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a b s t r a c t

Maize remains an important food crop in Africa. However, the production of this crop,
and consequently the livelihood of the growers are threatened by the invasion and
widespread infestation of the fall armyworm which causes substantial maize yield losses.
In this paper, a fractional-order fall armyworm-maize biomass model with naturally
beneficial insects and optimal farming awareness has been formulated. Comprehensive
analysis of the model has shown that it contains five equilibrium points which are all
locally and globally asymptotically stable if the conditions outlined in Lemma 2.1 and 2.2
are met. We also carried out numerical simulations to support the analytical results and
to illustrate different dynamical regimes that can be observed in the model. We have
found that time-dependent farming awareness can significantly reduce fall armyworm
population if the cost of implementation is relatively low.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the last half century, invasive species have caused unprecedented challenges to agricultural systems globally. In
ub-Saharan Africa (SSA), agriculture is considered the primary source of livelihoods for most households [1,2]. However,
ts contribution to food security and poverty reduction is hampered by several, often interacting, biotic and abiotic factors.
or instance, the recent invasion of fall armyworm (FAW-Spodoptera frugiperda JE Smith) in SSA has become a major threat
o food security in the region [2,3]. The first outbreak of FAW in Africa occurred in West Africa in 2016, and to date the
est has spread to 44 countries in the continent [2]. The FAW can cause damage to more than 80 crop species, including
conomically important crops such as maize, rice, sorghum, wheat, sugarcane and cotton just to mention a few.
Current estimates from 12 African countries suggest an annual loss of (4.1–17.6) million tons of maize due to FAW

nfestations [2]. In particular, farm-level estimates from Ghana and Zambia suggest yield losses of (22–67) per cent [3],
7% in Kenya [4] and 9.4% in Zimbabwe [5] due to FAW infestations. In maize, FAW attacks all cropping stages from
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seedling emergence through to ear development. They defoliate and destroy young plants whereby, whorl damage can
result in yield losses, and ear feeding can result in the reduction of grain quality and yields [6]. The Management of the
FAW involves the integration of several approaches, including the use of insecticides, host plant resistance, and biological
control. However, all these approaches depend on several characteristics of the involved agro-ecosystems [7]. In South
America where the pest has been a challenge for quite sometime, the common management strategy has been the use of
insecticide sprays and genetically modified crops like Bt maize [6].

Due to financial challenges associated with most of African governments, alongside the cost associated with massive
praying programs of chemical insecticides and the use of genetically modified crops like Bt maize, the effective
anagement of this pest in the continent remains a challenge [6]. In addition, excessive use of chemical insecticides

s associated with negative environmental effects and can lead to the development of pest resistance [8]. At the backdrop
f this, integrated pest management (IPM) has been gaining more attention among researchers and its application is also
ncreasing the crop yields [9,10]. This approach seeks to minimize the reliance on pesticides use by emphasizing the
pplication of biological control agents.
Mass media can affect the spread and attack poised by FAW during an outbreak. Furthermore, awareness campaigns,

articularly through various media outlets such as radio, newspapers, TV and so on, do not only make farmers aware of
AW outbreaks but also improve trust on IPM a nation will be advocating for. In recent times, attention to health news has
een observed to play an integral role in disease management [11]. There is no doubt that correct and relevant knowledge
bout maize crop and its pests is essential to farmers [10].
The main goal of this paper is to develop a mathematical model to assess the effects of media campaigns during a

AW outbreak. Mathematical models of plant-pest interactions have provided insights into effective methods for effective
est management as well as way of increasing plant productivity (e.g. [10,12–22]). In some of the studies (e.g. [10,12–
4,16,23]), mathematical models were used to investigate the effects of biological control on the dynamics of plant pest
nteractions, while in other studies (e.g. [17–22]), pest management models based solely on chemical controls were
roposed and analyzed. For instance, Liu and Teng [18] utilized a mathematical model to assess the impact of spraying
esticides at a fixed time on the pest reproductive cycles. Among several outcomes, their study showed that there exists
n optimal time for pest control if the pesticides were to be applied just before each birth pulse of the cycle. Wei [24]
roposed pest control models that incorporated birth pulse and were based on the assumption that pesticides killed adult
ests or larvae or both. Making use of numerical simulation, the study demonstrated that with the different elimination
ates for larvae and adults, the corresponding optimal times for pesticide applications were also different.

These studies and several others (e.g. [10,12–14,16–22,25]) have certainly produced many useful results and improved
he existing knowledge on plant-pest interaction dynamics. Despite of all these efforts, mathematical models for FAW
anagement during an outbreak are very few and of the few that exists there are some limitations; (i) majority of these

ew were general and not pest-specific, which implies that their results were also general. Practically, pests are not general,
ather, they follow different biological development cycles, hence more informative plant-pest interaction models need
o be pest-specific and closely follow the life cycle of the pest involved (ii) the presented models utilized integer-order
ifferential equations (IDEs) which according to Caputo [26], do not replicate real-world problems nor capture memory
ffects as compared to fractional calculus.
Furthermore, unlike IDEs, models based on fractional calculus have been found to be more accurate with regard to

escribing rules and development processes of several phenomena in natural science [27] and this has been attributed
o the fact that fractional order models possess memory effects and hereditary properties. Hence, there has been
rowing interest among researchers to use fractional calculus in modeling real-world problems, and some remarkable
chievements have been made [27]. Cognizant of this, a fractional order pest-plant based model has been proposed in the
resent study with the aim to study the effects of educational campaigns and FAW larval predation on persistence and
xtinction of the pest in a maize field. The model incorporates the maize biomass and two essential development stages
f the FAW, that is, the larval and the moth (adult). In addition, since FAW larvae are prey to several parasitoids, predators
nd pathogens like birds, rodents, beetles, earwigs [28], the proposed model incorporates the predator population.
The rest of the paper is organized as follows: In Section 2, a fractional-order FAW model is proposed and analyzed. In

articular, the model’s steady states have been computed and their stability has been investigate as well. In Section 3, we
erform an optimal control study to determine the effects of farming on minimizing the effects of FAW on maize biomass,
hrough both mathematical analysis and numerical simulation. Finally, we conclude the paper with some discussion in
ection 4.

. Model formulation and analytical results

.1. Model formulation

We developed a mathematical model for FAW outbreak in a maize field focusing on investigating the effects of farming
wareness and biological control (FAW predators). The proposed model is based on fractional calculus of Caputo type [26].
he FAW population is subdivided into two classes; the larvae L(t) and the adult which also known as the moth A(t). The
AW predator population is modeled by Z(t). Meanwhile, the dynamics of maize biomass are represented by M(t). The

roposed model is governed by the following assumptions:

2
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(i) We assume logistic growth for the density of maize biomass, with net growth rate r and carrying capacity KM . Let
β be the consumption rate by FAW larvae and e be the efficiency of biomass conversion. Awareness is assumed to
reduce the attack rate of the maize crop by FAW larvae by a factor 1 − u, with 0 ≤ u ≤ 1. Thus u = 0 implies
that awareness has no impact on reducing the attack rate of the maize plant by FAW whereas u = 1 implies that
farming awareness is 100% efficient in protecting the maize crop from FAW attack during an outbreak.

(ii) The dynamics of the FAW larvae are assumed to follow a logistic growth model, with net growth rate bL and the
carrying capacity KL. The larvae are assumed to progress to the adult stage after approximately 1/αL days. The
FAW larvae and adults suffer natural mortality at rates µL and µA, respectively. Apart from natural mortality, both
populations diminish due to mortality attributed to the mitigation strategies carried out by farmers as a result of
awareness, at the rate ud, where d is the mortality rate of the FAW larvae and adult. Note that if awareness does
not have an impact (u = 0) on FAW populations, then these populations suffer natural mortality only.

(iii) Even though biological control may not replace conventional insecticides, a number of parasitoids, predators and
pathogens like birds, rodents, beetles and earwigs readily attack the larvae [28]. To account for the effect of larval
predation, let σ be the attack rate of the larvae by predators and ρ be the efficiency of conversion. The average life
span of predators is assumed to be 1/η days.

Based on the above assumptions, the proposed model is summarized by the following system of nonlinear ordinary
differential equations (Fig. 1 shows the transition diagram):

c
aD

q
tM(t) = rqM

(
1 −

M
K q
M

)
− βq(1 − u)LM,

c
aD

q
t L(t) = bqLA

(
1 −

L
K q
L

)
+ eβq(1 − u)LM − σ qZL − (µL + αL + ud)L,

c
aD

q
t A(t) = α

q
L L − (µq

A + ud)A,
c
aD

q
t Z(t) = ρσ qLZ − ηqZ .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

ith initial conditions as:

M(0) ≥ 0, L(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0. (2)

Here, c
aD

q
t represents the Caputo fractional derivative of order q (0 < q < 1). The Caputo fractional derivative of order q

is defined [29]:

c
aD

q
t f (t) =

1
Γ (n − q)

∫ t

0

f n(ξ )
(t − ξ )q+1−n dξ, n − 1 < q < n ∈ N,

where Γ represents the gamma function and the Riemann Liouville fractional integral of arbitrary real order q > 0 of a
function f (t) is defined by the following integral:

Jqf (t) =
1

Γ (q)

∫ t

0
(t − ξ )q−1f (ξ )dξ,

J0f (t) = f (t).

Remark 2.1. Note that, in order to avoid flaws regarding the time dimension, we introduced q in the model parameters
(right-hand side) of system (2) so that the dimensions of these parameters became (time)−q which is in agreement with
the left-hand side of the model.

2.2. Positivity and boundedness of solutions

In this section, we study the positivity and boundedness of solutions of the proposed fractional order model (2) to
establish if it is mathematically and biological poised. It follows from (2) that:

Theorem 2.1. Model (2) is positively invariant and bounded in R4
+
.

Proof. This begin by demonstrating that R4
+

= {(M, L, A, Z) ∈ R4
+

: M(0) ≥ 0, L(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0} is positively
invariant. For that, we demonstrated that on each hyper-plane bounding the non-negative orthant, the vector field points
to R4

+
. Therefore, for M(0) ≥ 0, L(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0, we have
c
aD

q
tM(t) |M=0 = 0,

c
aD

q
t L(t) |L=0 = bqLA ≥ 0,

c
aD

q
t A(t) |A=0 = α

q
L L ≥ 0,

c q

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)
aDt Z(t) |Z=0 = 0.
3
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Fig. 1. Model flow diagram illustrating the dynamics of the FAW in a maize field. The fAW life cycle is divided into two classes; the larvae L(t)
and adult A(t) population. The FAW predator and maize biomass population are represented by compartment Z(t) and M(t) respectively. Continuous
lines indicate either inflow or outflow transition between compartments. Red and blue discontinuous arrows connecting compartment L(t) with
compartments Z(t) and M(t) show the interaction that occurs between the predators Z(t) and FAW larvae L(t) as well as with maize biomass M(t).
Note that the predator has an effect on larvae which in turn have an effect on maize biomass. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Based on the results in (3), it follows that model (2) is positively invariant in R4
+
. Further, from the first equation of model

(2), we demonstrate that M(t) ≤ KM , ∀t ≥ 0. If there exists t0 such that M(t0) > KM , then due to the continuity of M(t) :

∃Bϵ(t0) : ∀t ∈ Bϵ(t0) : M(t) > KM , (4)

so:

rM
(
1 −

M
KM

)
< 0. (5)

Thus c
t0D

qM(t) < 0. From the continuity of M(t) and dM
dt = limq→1−

c
t0D

qM(t) < 0, hence we conclude that M(t) is a
decreasing function for all t ≥ 0 and it follows that 0 ≤ M(t) ≤ M(0) ≤ KM , ∀t ≥ 0, and this is a contradiction to (4).
hus M(t) ≤ KM , for all t ≥ 0. Using a similar approach it can easily be verified that 0 ≤ L(t) ≤ KL. Now, from the third
quation of system (2) we have:

c
aD

q
t A(t) = α

q
L L − (µq

A + udq)A

≤ αqK q
L − (µq

A + udq)A. (6)

pplying the Laplace transform one gets:

sqL[A(t)] − sq−1A(0) ≤
α
q
LK

q
L

s
− (µq

a + udq)L[A(t)]. (7)

After combining like terms one gets:

L[A(t)] ≤ α
q
LK

q
L

s−1

sq + (µq
a + udq)

+ A(0)
sq−1

sq + (µq
A + ud)

= α
q
LK

q
L

sq−(1+q)

q + A(0)
sq−1

q . (8)

sq + (µa + udq) sq + (µa + udq)

4
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Applying the inverse Laplace transform leads to:

A(t) ≤ L−1
{
α
q
LK

q
L

sq−(1+q)

sq + (µq
a + udq)

}
+ A(0)L−1

{
sq−1

sq + (µq
a + udq)

}
≤ α

q
LK

q
L t

qEq,q+1(−(µq
a + udq)tq) + A(0)Eq,1(−(µq

a + udq)tq)

≤
α
q
LK

q
L

(µq
A + ud)

(µq
A + ud)tqEq,q+1(−(µq

a + udq)tq) + A(0)Eq,1(−(µq
a + udq)tq)

≤ max
{

αqK q
L

(µq
a + udq)

, A(0)
}
((µq

a + udq)tqEq,q+1(−(µq
a + udq)tq) + Eq,1(−(µq

a + udq)tq))

=
C

Γ (1)
= CA, (9)

where Eq is the Mittag-Leffler function and CA = max
{

α
q
L K

q
L

(µq
a+udq)

, P(0)
}
. Thus, A(t) is bounded from above. From the last

equation of system (2) we have:
c
aD

q
t Z(t) = ρσ qLZ − ηqZ

≤ −(ηq
− ρσ qK q

L )Z . (10)

Applying the Laplace transform in the previous inequality, we get:

sqL[Z(t)] − sq−1Z(0) ≤ −(ηq
− ρσ qK q

L )L[Z(t)], (11)

which can be written as:

L[Z(t)] ≤ Z(0)
sq−1

sq + (ηq − ρσ qK q
L )

. (12)

Applying the inverse Laplace transforms leads to

Z(t) ≤ Z(0)Eq[−(ηq
− ρσ qK q

L )t
q
]. (13)

Hence, we conclude that Z(t) is bounded. □

2.3. Equilibrium points and their existence

The fractional-order model (2) has the following six equilibrium points:

(a) The trivial equilibrium point E0 : (M0, L0, A0, Z0) = (0, 0, 0, 0) always exists.

(b) The pest-extinction equilibrium point E1 : (M1, L1, A1, Z1) = (KM , 0, 0, 0) always exists.

(c) The plant-extinction equilibrium point E2 : (M2, L2, A2, Z2) where:

M2 = 0, L2 =
ηq

ρ
, A2 =

ηqαq

(µq
A + udq)ρ

,

Z2 =
bqηq

+ ρK q
L (µ

q
L + αq

+ udq)
ρσ qK q

L

(
bqρK q

L

bqηq + ρK q
L (µ

q
L + udq + αq)

− 1
)

.

⎫⎪⎪⎬⎪⎪⎭ (14)

Thus, the equilibrium point E2 makes biological sense if bqρKq
L

bqηq+ρKq
L (µ

q
L+udq+α

q
L )

> 1.

(d) The plant and predator-extinction equilibrium point E3 : (M3, L3, A3, Z3) where:

M3 = 0, L3 =
ηqK q

L

bq

(
bq

(µq
L + α

q
L + udq)

− 1
)

,

A3 =
α
q
LK

q
K (µ

q
L + α

q
L + udq)

bq(muq
A + udq)

(
bq

(µq
L + α

q
L + udq)

− 1
)

,

Z3 = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (15)

Therefore the equilibrium point E exists and is biologically meaningful if bq > (µq
+ α

q
+ udq).
3 L L
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(e) The predator-extinction equilibrium point is E4 : (M4, L4, A4, Z4) where:

M4 =

K q
M

[
rqbq + βqK q

L (µ
q
L + α

q
L + udq)

(
1 −

bq

(µq
L + α

q
L + udq)

)]
rqbq + e(βq(1 − u))2K q

MK q
L

,

L4 =
rqK q

L

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + αq + udq)

− 1
)

,

A4 =
rqαqkqL

(µq
A + udq)(µq

L + αL + udq)ñ

(
bq + eβq(1 − u)K q

M

(µq
L + α

q
L + udq)

− 1
)

,

Z4 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

where ñ = (rqbq + e(βq(1 − u))2K q
L K

q
M . It follows that the equilibrium point E4 exists and is biologically feasible if

bq + eβq(1 − u)K q
M > (µq

L + α
q
L + udq) with bq < (µq

L + α
q
L + udq).

f) The coexistence equilibrium point E5 : (M5, L5, A5, Z5) where:

M5 =
K q
Mβqηq

rqρ

(
rqρ
βqηq − 1

)
L5 =

ηq

ηq , A5 =
ηqα

q
L

(µq
A + udq)ρ

,

Z5 =
K q
Me(βq(1 − u))2ηq

rqρσ q

(
rqρq

βqηq − 1
)

+
σ q(K q

L r
qρ(µq

L + α
q
L + udq)) + bq

rqρ

(
bqK q

L r
qρ

bqrqηq(µq
L + α

q
L + udq)K q

L rqρ
− 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(17)

Therefore, the equilibrium point E5 exists and is biologically meaningful if bqK q
L r

qρ > bqrqηq(µq
L + α

q
L + udq)K q

L r
qρ

with rqρ > βqηq.

2.4. Local stability analysis of the equilibrium points

The local stability analysis of for the fractional order model (2) around the above equilibrium points is obtained by
computing the Jacobian matrix corresponding to equilibrium points. The Jacobian matrix of system (2) is as follows:

J(M, L, A, Z) =

⎡⎢⎢⎢⎣
rq − βqL −

2rqM
K q
M

−βqM 0 0

eβq(1 − u)L n 0 −σ qL
0 α

q
L −(µq

A + udq) 0
0 ρZ 0 −ηq

+ ρL

⎤⎥⎥⎥⎦ . (18)

ith n = bq + eβq(1 − u)M − σ qZ − (µq
L + α

q
L + udq) −

2bqL
Kq
L
. The local stability of the equilibrium points of model (2) is

now investigated making use of the Jacobian matrix (18) and Lemmas 2.1 and 2.2.

Lemma 2.1 ([30]). Consider the following fractional order system:
c
t0D

qx(t) = f (t, x),
x(0) = x0

}
(19)

here f (t, x) : R+
×Rn

→ Rn. The equilibrium points (14) are locally asymptotically stable if all eigenvalues λi of the Jacobian
atrix ∂ f (t,x)

∂x evaluated at the equilibrium points satisfy the following condition:

|arg(λi) >
qπ
2

.

emma 2.2 ([31], Routh–Hurwitz Criteria). Given the polynomial:

P(λ) = λn
+ a1λn−1

+ a2λn−2
+ a3λn−3

+ a4λn−4
+ · · · + an−1λ + an,

here the coefficients ai are real constants, i = 1, . . . , n, define the n Hurwitz matrices using the coefficients ai of the
haracteristic polynomial

H1 =
[
a1

]
, H2 =

[
a1 1
a3 a2

]
, H3 =

[a1 1 0
a3 a2 a1

]
,

a5 a4 a3
6
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and

Hn =

⎡⎢⎢⎢⎢⎣
a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

⎤⎥⎥⎥⎥⎦ ,

where aj = 0 if j > n. All of the roots of the polynomial P(λ) are negative or have negative real part if and only if the
determinants of all Hurwitz matrices are positive:

det(Hj) > 0, j = 1, 2, . . . , n.

Routh–Hurwitz criteria for n = 2, 3, and 4 are as follows:

(C1) n = 2 : a1 > 0, and a2 > 0,
(C2) n = 3 : a1 > 0, a3 > 0, and a1a2 > a3
(C3) n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21a4.

Theorem 2.2.

(i) The trivial equilibrium point E0 is locally asymptotically unstable.
(ii) If bq < (µq

L + α
q
L + udq), then the pest-extinction equilibrium point E1 is locally asymptotically stable.

(iii) If rqρ < βqηq and condition (C1) of Lemma 2.2 holds, then the equilibrium point E2 is locally asymptotically stable,
otherwise it is unstable.

(iv) If bq + eβq(1− u)K q
M < (µq

L + αq
+ udq) and condition (C1) of Lemma 2.2 holds, then the equilibrium point E4 is locally

asymptotically stable, otherwise it is unstable.
(v) If condition (C2) of Lemma 2.2 holds, then the equilibrium point E5 is locally asymptotically stable, otherwise it is unstable.

Proof.

(i) The Jacobian matrix of system (2) evaluated at E0 is

J(E0) =

⎡⎢⎣rq 0 0 0
0 bq − (µq

L + α
q
L + udq) 0 0

0 α
q
L −(µq

+ udq) 0
0 0 0 0 −ηq

⎤⎥⎦ .

The eigenvalues of matrix J(E0) are λ1 = rq > 0, λ2 = bq − (µq
L + α

q
L + udq), λ3 = −(µA + udq) and λ4 = −ηq. Since

λ1 > 0 it follows that the trivial equilibrium point E0 is locally asymptotically unstable.

(ii) The Jacobian matrix of system (2) evaluated at E1 is

J(E1)

⎡⎢⎣−rq 0 0 0
0 bq − (µq

L + α
q
L + udq) 0 0

0 α
q
L −(µq

+ udq) 0
0 0 0 0 −ηq

⎤⎥⎦ .

The eigenvalues of matrix J(E0) are λ1 = −rq, λ2 = bq − (µq
L +α

q
L +udq), λ3 = −(µA +udq) and λ4 = −ηq. Following

Lemma 2.1, it can be observed that the equilibrium point E1 is locally asymptotically stable if bq < (µq
L + α

q
L + udq)

(iii) The Jacobian matrix of system (2) evaluated at E2 is:

J(E2) =

⎡⎢⎣ rq − βqL2 0 0 0
eβq(1 − u)L2 m̃ 0 −σ qL2

0 α
q
L −(µq

A + udq) 0
0 ρZ2 0 −ηq

+ ρL2

⎤⎥⎦ . (20)

with m̃ = bq − σ qZ2 − (µq
L + α

q
L + udq)− 2bqL2

Kq
L

. The eigenvalues of matrix (20) are λ1 = rq −
βqηq

ρ
, λ2 = −(µq

A + udq)

and the remaining eigenvalues can be obtained from the reduced matrix

J̃(E2) =

⎡⎣bq − σ qZ2 − (µq
L + α

q
L + udq) −

2bqL2
K q
L

−σ qL2
q

⎤⎦ , (21)

ρZ2 −η + ρL2

7
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(

whose characteristic equation is as follows

λ2
+ a1λ + a2 = 0, (22)

with

a1 = ηq
+ σ qZ2 + (µq

L + α
q
L + udq) − bq,

= ηq
+ σ q b

qηq
+ ρK q

L (µ
q
L + αq

+ udq)
ρσ qK q

L

(
bqρK q

L

bqηq + ρK q
L (µ

q
L + udq + αq)

− 1
)

+bq
(
(µq

L + α
q
L + udq)
bq

− 1
)

a2 = σ qηqZ2 + (ηq
− ρL2)

(
(µq

L + α
q
L + udq) +

2bL2
KL

− bq
)

= σ qηq b
qηq

+ ρK q
L (µ

q
L + αq

+ udq)
ρσ qK q

L

(
bqρK q

L

bqηq + ρK q
L (µ

q
L + udq + αq)

− 1
)

. (23)

Therefore, if rqρ < βqηq and condition (C1) of Lemma 2.2 holds, then the equilibrium point E2 is locally
asymptotically stable, otherwise it is unstable.

iv) The Jacobian matrix of system (2) evaluated at E3 is

J(E3) =

⎡⎢⎢⎢⎣
rq − βqL3 0 0 0

eβqL3 bq − (µq
L + α

q
L + udq) −

2bqL3
K q
L

0 −σ qL3

0 α
q
L −(µq

A + udq) 0
0 ρZ3 0 −ηq

+ ρL3

⎤⎥⎥⎥⎦ . (24)

One can observe that, λ1 = rq −
βqηq

ρ
, λ2 = −(µq

A + udq) are some of the eigenvalues of the Jacobian matrix (24),
hence matrix (24) reduces to

J̃(E3) =

⎡⎣bq − (µq
L + α

q
L + udq) −

2bqL3
K q
L

−σ qL3

ρZ3 −ηq
+ ρL3

⎤⎦ . (25)

From (25) we have the characteristic equation

λ2
+ ā1λ + ā2 = 0, (26)

with

ā1 = bq
(
(ηq

+ µ
q
L + α

q
L + udq)

bq
− 1

)
+ 2ηq

(
bq

(µq
L + αq + udq)

− 1
)

,

ā2 = ηq(µq
L + αq

+ udq)
(
1 −

bq

(µq
L + αq + udq)

)(
1 −

ρK q
L

bq

(
bq

(µq
L + αq + udq)

− 1
))

+ 2(ηq)2
(
1 − ρ

ηqK q
L

bq

(
bq

(µq
L + αq + udq)

− 1
))(

bq

(µq
L + αq + udq)

− 1
)

. (27)

Thus, if rqρ < βqηq and condition (C1) of Lemma 2.2 holds, then the equilibrium point E3 is locally asymptotically
stable, otherwise it is unstable.

(iv) The Jacobian matrix of system (2) evaluated at E4 is

J(E4) =

⎡⎢⎢⎢⎣
rq − βqL4 −

2rqM4

K q
M

−βqM4 0 0

eβq(1 − u)L4 n̄ 0 −σ qL4
0 α

q
L −(µq

A + udq) 0
0 0 0 −ηq

+ ρL4

⎤⎥⎥⎥⎦ , (28)
8
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with n̄ = bq + eβq(1 − u)M4 − (µq
L + α

q
L + udq) −

2bqL4
Kq
L

. The eigenvalues of J(E4) are;

λ1 = −(µq
A + udq)

λ2 = −ηq
+ ρL4

= −ηq
−

ρrqK q
L

rqbq + e(βq(1 − u))2K q
MK q

L

(
1 −

bq + eβq(1 − u)K q
M

(µq
L + αq + udq)

)
. (29)

Hence, matrix (28) reduces to

J̃(E4) =

[
w1 −βqM4

eβq(1 − u)L4 w2

]
, (30)

with

w1 = rq − βqL4 −
2rqM4

K q
M

= rq −
βqrqK q

L

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + αq + udq)

− 1
)

−

2rq
[
rqbq + βqK q

L (µ
q
L + α

q
L + udq)

(
1 −

bq

(µq
L + α

q
L + udq)

)]
rqbq + e(βq(1 − u))2K q

MK q
L

,

w2 = bq + eβq(1 − u)M4 − (µq
L + α

q
L + udq) −

2bqL4
K q
L

= bq + eβq(1 − u)
K q
M

[
rqbq + βqK q

L (µ
q
L + α

q
L + udq)

(
1 −

bq

(µq
L + α

q
L + udq)

)]
rqbq + e(βq(1 − u))2K q

MK q
L

− (µq
L + α

q
L + udq) −

2bqrq

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + αq + udq)

− 1
)

.

From (30), the corresponding characteristic equation is

λ2
+ ã1λ + ã2 = 0, (31)

with

ã1 = −(w1 + w2),

ã2 = w1w2 +
eβ2q(1 − u)2rqK q

L

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + α

q
L + udq)

− 1
)

.

Therefore, if bq + eβq(1 − u)K q
M < (µq

L + α
q
L + udq) and condition (C1) of Lemma 2.2 holds, then the equilibrium

point E4 is locally asymptotically stable, otherwise it is unstable.

(vi) Since all the variables are non-zero at the coexistence equilibrium point, it follows that matrix J (18) is the Jacobian
matrix of system (2) at this equilibrium point. From (18) one can observe, that λ1 = −(µq

A +udq) and the remainder
can be obtained from the following reduced matrix:

J̄(E5) =

[
w̄1 −βqM5 0

eβqL5 w̄2 −σ qL5
0 ρZ5 w̄3

]
. (32)

where

w̄1 = rq − βqL5 −
2rqM5

K q
M

,

w̄2 = bq + eβq(1 − u)M5 − σ qZ5 − (µq
L + α

q
L + udq) −

2bqL5
K q
L

,

w̄3 = −ηq
+ ρL5. (33)

The corresponding characteristic equation at E5 becomes
3 ∗ 2 ∗ ∗
λ + a1λ + a2λ + a3 = 0,

9



S. Daudi, L. Luboobi, M. Kgosimore et al. Results in Applied Mathematics 12 (2021) 100209

2

p

T

P

T

I

t
c

T

P

T

with

a∗

1 = −(w̄1 + w̄2 + w̄3),
a∗

2 = w̄1(w̄2 + w̄2) + w̄2w̄3 + σρL5Z5 + e(βq)2L5M5,

a∗

3 = −w̄1(σ qρL5Z5 + w̄2w̄3) − e(βq)2L5M5w̄3.

Since λ1 < 0, it follows that condition (C2) of Lemma 2.2 holds, then the equilibrium point E5 is locally
asymptotically stable, otherwise it is unstable. This completes the proof. □

.5. Global stability analysis of the equilibrium points

In this section, Lyapunov functions will be constructed in order to investigate the global stability of the equilibrium
oints of the model. To simplify the analysis, let g0(M) = rqM(1 − M/KM ) and g1(L, A) = bL(1 − L/KL)A.

heorem 2.3. The trivial equilibrium point E0 is globally asymptotically stable whenever:

eg0(M) + g1(L, A) ≤
(µq

L + α
q
L + udq)(µq

A + udq)A
α
q
L

+
σ qηq

ρ
Z .

roof. Let us consider the following Lyapunov function:

U0(t) = eM(t) + L(t) +
(µq

L + α
q
L + udq)

α
q
L

A(t) +
1
ρ
Z(t). (34)

he fractional derivative of (34) along the solutions of system (2) leads to:

c
aD

q
tU0(t) ≤

c
aD

q
t [eM(t)] +

c
a D

q
t L(t) +

c
a D

q
t

[
(µq

L + α
q
L + udq)

α
q
L

A(t)
]

+
c
a D

q
t

[
1
ρ
Z(t)

]
= e[g0(M) − βq(1 − u)LM] + g1(L, A) + eβq(1 − u)LM − σ qZL − (µq

L + α
q
L + udq)L

+
(µq

L + α
q
L + udq)

α
q
L

[
α
q
L L − (µq

A + udq)A
]

+
1
ρ

[
ρσ qLZ − ηqZ

]
= eg0(M) + g1(L, A) −

(µq
L + α

q
L + udq)(µq

A + udq)A
α
q
L

−
ηq

ρ
Z . (35)

t follows that if M(t) = M0, L(t) = L0, A(t) = A0 and Z(t) = Z0, then c
aD

q
tU1(t) = 0. However, if:

eg0(M) + g1(L, A) ≤
(µq

L + α
q
L + udq)(µq

A + udq)A
α
q
L

+
σ qηq

ρ
Z < 0,

hen c
aD

q
tU1(t) < 0 and the trivial equilibrium point E0 is globally asymptotically stable, otherwise it is unstable. This

ompletes the proof. □

heorem 2.4. The equilibrium point E1 is globally asymptotically stable whenever:

eg0(M)
(
1 −

M∗

M
+ βq(1 − u)

LM∗

g0(M)

)
+ g1(L, A) −

(µq
L + α

q
L + udq)(µq

A + udq)A
α
q
L

−
σ qηq

ρ
Z ≤ 0.

roof.

U1(t) = e
[
M(t) − M1 − M1 ln

(
M(t)
M1

)]
+ L(t) +

(µq
L + α

q
L + udq)

α
q
L

A(t) +
1
ρq Z(t). (36)

he fractional derivative of (36) along the solutions of system (2) leads to:

c
aD

q
tU1(t) ≤ e

(
1 −

M∗

M(t)

)
c
aD

q
tM(t) +

c
a D

q
t L(t) +

c
a D

q
t

[
(µL + αL + ud)

αL
A(t)

]
+

c
a D

q
t

[
1
ρ
Z(t)

]
= e

(
1 −

M1
)
(g0(M) − βq(1 − u)LM) + g1(L, A) + eβq(1 − u)LM − σ qZL
M(t)
10
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I

t
c

T

P

T

A

M

W

− (µL + αL + ud)L +
(µq

L + α
q
L + udq)

α
q
L

[
α
q
L L − (µq

A + udq)A
]

+
1
ρ

[
ρσ qLZ − ηqZ

]
= eg0(M)

(
1 −

M1

M
+ β(1 − u)

LM1

g0(M)

)
+ g1(L, A) −

(µL + αL + ud)(µq
A + udq)A

α
q
L

−
σ qηq

ρ
Z .

t follows that if M(t) = M1, L(t) = L1, A(t) = A1 and Z(t) = Z1, then c
aD

q
tU1(t) = 0. However, if:

eg0(M)
(
1 −

M1

M
+ βq(1 − u)

LM1

g0(M)

)
+ g1(L, A) −

(µq
L + α

q
L + udq)(µq

A + ud)A
α
q
L

−
σ qηq

ρ
Z < 0,

hen c
aD

q
tU1(t) < 0 and the trivial equilibrium point E1 is globally asymptotically stable, otherwise it is unstable. This

ompletes the proof. □

heorem 2.5. The equilibrium point E2 is globally asymptotically stable whenever:

g1(L2, A2)
(
1 −

L
L2

−
L2g1(L, A)
L2g(L2, A2)

+
g1(L, A)
g1(L2, A2)

)
+ L2

(
1 +

L
L2

−
A
A2

−
LA2

L2A

)
+ eg0(M) − eβq(1 − u)L2M ≤ 0.

roof. Consider the Lyapunov functional:

U1(t) = eM(t) +

[
L(t) − L2 − L2 ln

(
L(t)
L2

)]
+

1
α
q
L

[
A(t) − A2 − A2 ln

(
A(t)
A2

)]
+

1
ρ

[
Z(t) − Z2 − Z2 ln

(
Z(t)
Z2

)]
. (37)

he fractional derivative of (37) along the solutions of system (2) leads to:

c
aD

q
tU2(t) ≤ e c

aD
q
tM(t) +

(
1 −

L3

L(t)

)
c
aD

q
t L(t) +

1
α
q
L

(
1 −

M3

M(t)

)
c
aD

q
t A(t)

+
1
ρ

(
1 −

Z3

Z(t)

)
c
aD

q
t Z(t). (38)

t the equilibrium point E2 we have the following identities:

(µq
L + α

q
L + udq)L2 = g1(L2, A2) − σ qZ2L2, (µq

A + udq)A2 = α
q
L L2, ηq

= σ qρL2.

aking use of these identities leads to

c
aD

q
tU2(t) ≤ g1(L2, A2)

(
1 −

L
L2

−
L2g1(L, A)
L2g1(L2, A2)

+
g1(L, A)
g1(L2, A2)

)
+ L2

(
1 +

L
L2

−
A
A2

−
LA2

L2A

)
+ eg0(M) − eβq(1 − u)L2M. (39)

e can note that, at the equilibrium point E3 one can easily verify that c
aD

q
tU2(t) = 0 and c

aD
q
tU2(t) < 0 if and only if:

g1(L2, A2)
(
1 −

L
L2

−
L2g1(L, A)
L2g1(L2, A2)

+
g1(L, A)
g1(L2, A2)

)
+ L2

(
1 +

L
L2

−
A
A2

−
LA2

L2A

)
+ eg0(M) − eβq(1 − u)L2M < 0.

Hence, if the above condition holds then E is globally asymptotically stable. This completes the proof. □
2

11
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A

U

I

P

A

Theorem 2.6. The equilibrium point E3 is globally asymptotically stable whenever:

g1(L3, A3)
(
1 −

L
L3

−
L3g1(L, A)
L3g1(L3, A3)

+
g1(L, A)
g1(L3, A3)

)
+ L3

(
1 +

L
L3

−
A
A3

−
LA3

L3A

)
+ eg0(M) − eβq(1 − u)L3M − ηqZ

(
1 −

σ q

ηq L3

)
≤ 0.

Proof. Consider the Lyapunov functional:

U3(t) = eM(t) +

[
L(t) − L3 − L3 ln

(
L(t)
L3

)]
+

1
α
q
L

[
A(t) − A3 − A3 ln

(
A(t)
A3

)]
+

1
ρ
Z(t). (40)

t the equilibrium point E3 we have the identities:

(µq
L + α

q
L + udq)L3 = g1(L3, A3), (µq

A + udq)A3 = α
q
L L3.

tilizing these identities leads to the following result:

c
aD

q
tU3(t) ≤g1(L3, A3)

(
1 −

L
L3

−
L3g1(L, A)
L3g1(L3, A3)

+
g1(L, A)
g1(L3, A3)

)
+ L3

(
1 +

L
L3

−
A
A3

−
LA3

L3A

)
+ eg0(M) − eβq(1 − u)L3M − ηq

(
1 −

σ q

ηq L3

)
.

t follows that if M(t) = M3, L(t) = L3, A(t) = A3 and Z(t) = Z3, then c
aD

q
tU3(t) = 0. However, if:

g1(L3, A3)
(
1 −

L
L3

−
L3g1(L, A)
L3g1(L3, A3)

+
g1(L, A)
g1(L3, A3)

)
+ L3

(
1 +

L
L3

−
A
A3

−
LA3

L3A

)
+ eg0(M) − eβq(1 − u)L3M − ηq

(
1 −

σ q

ηq L3

)
< 0,

then c
aD

q
tU3(t) < 0 and it follows that equilibrium point E3 is globally asymptotically stable, otherwise it is unstable. This

completes the proof. □

Theorem 2.7. The equilibrium point E4 is globally asymptotically stable whenever:

g0(M4)
(

L
L4

+
g0(M)
g0(M4)

−
M4

M
g0(M)
g0(M4)

−
LM
L4M4

g0(M)
g0(M4)

)
+ L4

(
1 +

L
L4

−
A
A4

−
LA4

L4A

)
+g1(L4, A4)

(
1 +

g1(L, A)
g1(L4, A4)

−
L
L4

−
L4
L

g1(L, A)
g1(L4, A4)

)
+ eβq(1 − u)L4M4

(
1 +

LM
L4M4

−
L
L4

−
L4g1(L, A)
Lg(L4, A4)

)
≤ 0. (41)

roof. Consider the Lyapunov functional:

U4(t) = +

[
M(t) − M4 − M4 ln

(
M(t)
M4

)]
+

[
L(t) − L4 − L4 ln

(
L(t)
L4

)]
+

1
α
q
L

[
A(t) − A4 − A4 ln

(
A(t)
A4

)]
+

1
ρ

[
Z(t) − Z4 − Z4 ln

(
Z(t)
Z4

)]
. (42)

t the equilibrium point E4 we have the following identities:

g0(M4) = βq(1 − u)L4M4,

g1(L4, A4) + eβq(1 − u)L4M4 − σ qL4Z4 = (µq
L + α

q
L + udq)L4,

(µq
+ udq)A4 = α

qL4, σ qρL4 = η.
A L

12
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c

3

F
i
i
u
w
i
i

s

I
r
a
c

Utilizing these identities leads to the following result:

c
aD

q
tU4(t) ≤ g0(M4)

(
L
L4

+
g0(M)
g0(M4)

−
M4

M
g0(M)
g0(M4)

−
LM
L4M4

g0(M)
g0(M4)

)
+g1(L4, A4)

(
1 +

g1(L, A)
g1(L4, A4)

−
L
L4

−
L4
L

g1(L, A)
g1(L4, A4)

)
+ eβq(1 − u)L4M4

(
1 +

LM
L4M4

−
L
L4

−
L4g1(L, A)
Lg(L4, A4)

)
+L4

(
1 +

L
L4

−
A
A4

−
LA4

L4A

)
.

It follows that if M(t) = M4, L(t) = L4, A(t) = A4 and Z(t) = Z4, then c
aD

q
tU4(t) = 0. However, if:

g0(M4)
(

L
L4

+
g0(M)
g0(M4)

−
M4

M
g0(M)
g0(M4)

−
LM
L4M4

g0(M)
g0(M4)

)
+g1(L4, A4)

(
1 +

g1(L, A)
g1(L4, A4)

−
L
L4

−
L4
L

g1(L, A)
g1(L4, A4)

)
+ eβq(1 − u)L4M4

(
1 +

LM
L4M4

−
L
L4

−
L4g1(L, A)
Lg(L4, A4)

)
+L4

(
1 +

L
L4

−
A
A4

−
LA4

L4A

)
< 0,

then c
aD

q
tU4(t) < 0 and it follows that equilibrium point E4 is globally asymptotically stable, otherwise it is unstable. This

ompletes the proof. □

. Optimal control problem

In this section, we investigate the role of time-dependent intervention strategies on minimizing the growth of the
AW population during an outbreak. Precisely, we investigate the effects of time dependent awareness campaigns as an
ntervention to control the growth of FAW population. Hence the constant awareness campaign parameter u in model (2)
s now considered to be time-dependent, that is, 0 ≤ u(t) ≤ umax < 1, where umax is the upper bound of the control
(t), which reflects practical limitation on the maximum rate of control that can be implemented in a given period. In
hat follows, we introduce an objective functional J which will be utilized to formulate the optimization problem of

nterest. In particular, the overall objective here is to minimize the number of FAW larvae and moths over a finite time
nterval [0, T ] at minimal costs. Mathematically, this can be captured as follows:

J[u(t)] = min
Ω

∫ T

0

[
L(t) + A(t) +

W
2
u2(t)

]
dt, (43)

ubject to the system:

c
aD

q
tM(t) = rqM

(
1 −

M
K q
M

)
− βq(1 − u(t))LM,

c
aD

q
t L(t) = bqLA

(
1 −

L
K q
L

)
+ eβq(1 − u(t))LM − σ qZL − (µq

L + α
q
L + u(t)dq)L,

c
aD

q
t A(t) = α

q
L L − (µq

A + u(t)dq)A,
c
aD

q
t Z(t) = ρσ qLZ − ηqZ .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(44)

n Eq. (43), W is known as the weight constant. The weight constant over the prescribed time frame is a measure of the
elative costs of the interventions over a finite time horizon. The optimal control problem hence becomes that, we seek
n optimal function, u∗(t), such that J(u∗(t)) = minΩ J(u(t)) subject to the state equations in system (44) with initial
onditions (2).
13
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3.1. Optimality system

We use Pontryagin’s maximum principle [32,33] to determine the necessary conditions that optimal controls must
atisfy. Through Pontryagin’s maximum principle, system (44) is converted into an equivalent problem, namely the
roblem of minimizing the Hamiltonian H(t) given by:

H(t) = L(t) + A(t) +
W
2
u2(t)

+ λ1

[
rqM

(
1 −

M
K q
M

)
− βq(1 − u(t))LM

]
+ λ2

[
bqLA

(
1 −

L
K q
L

)
+ eβq(1 − u(t))LM − σ qZL − (µq

L + α
q
L + u(t)dq)L

]
+ λ3

[
α
q
L L − (µq

A + u(t)dq)A
]

+ λ4

[
ρσ qLZ − ηqZ

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

here λ1(t), λ2(t), λ3(t) are λ4(t) are the adjoint variables corresponding to the states M(t), L(t), A(t) and Z(t).
Given an optimal control u∗(t) and the corresponding state solutions M , L, A and Z , there exist adjoint functions λi(t),

= 1, 2, 3, 4 satisfying:

c
aD

q
t λ1(T − t) =

[
rq −

2rqM(T − t)
K q
M

− βq(1 − u(T − t))L(T − t)
]
λ1(T − t)

+eβq(1 − u(T − t))L(T − t)λ2(T − t),
c
aD

q
t λ2(T − t) = 1 − βq(1 − u(T − t))M(T − t)λ1(T − t) + α

q
Lλ3(T − t)

+σ qρZ(T − t)λ4(T − t) + eβq(1 − u(T − t))M(T − t)λ2(T − t)

−

[
α
q
L + µ

q
L + u(T − t)dq −

bqLA(T − t)
KL

+ σ qZ(T − t)
]
λ2(T − t),

c
aD

q
t λ3(T − t) = 1 − (µq

A + u(T − t)dq)λ3(T − t) + bL

(
1 −

L(T − t)
K q
L

)
λ2(T − t),

c
aD

q
t λ4(T − t) = −σ qL(T − t)λ2(T − t) + (σ qρL(T − t) − ηq)λ4(T − T ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

ith transversality conditions λi(T ) = 0 for i = 1, 2, 3, 4. Furthermore, the optimal controls are characterized by the
optimality conditions:

u(t) = min
{
max

{
0,

(eβqM + dq)Lλ2 + dqAλ3 − βqLMλ1

W

}
, umax

}
. (47)

. Numerical results and discussions

In this section, we present some numerical results to support the analytical results presented in Sections 2 (2.2, 2.3, 2.4.
.5) and 3. For the numerical simulations, we use a forward–backward sweep iterative scheme [33]. The initial population
evels were assumed as follows: M(0) = 15, L(0) = 500, A(0) = 100, and Z(0) = 50. All simulation of the model (2) was
done using the baseline values for model parameters presented in Table 1 obtained from different literature.

Before investigating the effects of time-dependent farming awareness on minimizing or eradicating FAW in the maize
field, we first simulate the model system (2) with constant awareness campaigns u. From the simulation in Fig. 2, we can
bserve that at this level of farming awareness (u = 0.1), the maize biomass will increase from the start and converge to

35 biomass per plant which is less than the expected 50 biomass per plant. This suggests that while farming awareness
may minimize the effects of FAW on maize biomass, to some extent it cannot be highly effective towards achieving the
expected biomass per plant. However, in Fig. 3 we can observe that if u = 0.7, then the level of maize biomass converges
to the expected level even at different fractional order values. Thus, as the awareness level increases to levels close to
100% (u = 1), the FAW population decreases significantly and the final maize biomass reaches expected levels.

Next, we investigate the effects of time-dependent awareness campaigns u(t) on minimizing the damage on maize
iomass by FAW. Without loss of generality, we set q = 0.9 and u(t) = 0.03 per day with an upper bound of umax = 1.
he simulation results are presented in Fig. 4.
From the results in Fig. 4, one can note that in the presence of time-dependent farming awareness, the FAW population

larvae and moth) decreases remarkably compared to when there is no time dependent farming awareness. We also note
14
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Fig. 2. Simulation results of model (2) with constant farming awareness u = 0.1 and different fractional order values.

Fig. 3. Simulation results of model (2) with constant farming awareness u = 0.7 and different fractional order values.
15
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Fig. 4. Simulation results of model (2) with time-dependent constant farming awareness 0 ≤ u(t) ≤ 1, q = 0.9 and W = 10.

Table 1
Model parameters and their baseline values.
Symbol Definition Baseline value Source

bL Growth rate of larva 1/14 day−1 [34]
α−1
L Average development time of the larva 30 Days [34]

µ−1
A Average moth life span 21 Days [34]

KM Maximum biomass of maize plants 50 plant−1 [35].
KL Egg environmental carrying capacity 106 [35].
µL Natural mortality rate of larva 0.01 Day−1 [35].
r Growth rate of maize plants 0.05 Day−1 [35].
e Efficiency of biomass conversion 0.2 [35].
β Plant attack rate by larvae 5 × 10−5 Day−1 [36].
σ Consumption rate of larva by predators 5 × 10−5 Day−1 [37].
ρ Conversion rate of prey to predator 0.1 Day−1 [38].
d Mortality of FAW due to intervention strategies 0.01 Day−1 [37].
η−1 Average life span of predator 100 Days [39].

that a significant decrease of the FAW larvae in the presence of optimal farming awareness will also lead to a slight
decrease of the predator population over time. The results also show that in the presence of optimal farming awareness,
the final maize biomass will be within the expected level. However, in the absence of optimal farming awareness the final
16
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Fig. 5. Simulation results of model (2) at low maximum intensity umax = 0.5, with q = 0.9 and W = 100.

iomass level will always be less than the expected final biomass. In addition, one can observe that the optimal control
rofile (Fig. 4(d)) starts at umax = 1 and remains there for the greater part of time horizon (0 ≤ t ≤ 195 days) till it
rops close to the final period. This suggests that for one to attain the outcomes in Fig. 4, optimal farming awareness
fforts need to be maintained at their maximum intensity for the greater part of the time horizon and thereafter ceased
radually till the final time.
The simulation results in Fig. 5 show the impact of the upper bound of the control variable umax on model solutions.

ere, we set umax = 0.5. We can note that in this scenario, the optimal efforts will need to be maintained at their
aximum intensity throughout the entire time horizon in order for the final maize biomass to be within the expected

evel.
The simulation results in Fig. 6 show that the impact of the costs on the implementation of optimal farming awareness.

ere we set W = 1000. We note that when the costs of implementing farming awareness are high, the control profile
for u(t) does not start at its maximum, umax = 1, but begins on u(t) = 0.8, followed by a gradual decrease before it
stabilizes at u(t) = 0.4 after approximately 40 days from the start. The control profile stays at u(t) = 0.4 till the 150th
ay after which it increases slightly to u(t) = 0.5 and immediately drops gradually to its minimum until the final time
orizon. Although the pattern of the control profile is complex, one can deduce that optimum results can be attained
f the intensity of the control u(t) is maintained between 0.4 and 0.5 (0.4 ≤ u(t) ≤ 0.5) for a greater part of the time
orizon.
17
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Fig. 6. Simulation results of model (2) at high cost of implementation, W = 1000, 0 ≤ u(t) ≤ 1, and q = 0.9.

5. Concluding remarks

We have formulated a fractional-order model that incorporates naturally beneficial insects and optimal farming
awareness. Dynamical analysis of the proposed model revealed that it has six equilibrium points which are all locally
and globally asymptotically stable if the conditions outlined in Lemmas 2.1 and 2.2 are met. The simulation results for
the model with constant awareness campaigns u, showed that u = 0.7 may lead to the achievement of the expected maize
biomass at the end of the season (that is t = 160 days) for fractional-order values q = 0.7, 0.8, 0.9. However for q = 1.0,
the final maize biomass at this level of awareness will be slightly less than the expected. For time-dependent farming
awareness, we observed that the expected maize biomass can be attained if the costs of implementing the strategy are
low. In addition, we observed that if the intensity of implementing is low, then the efforts can be carried out at their
maximum intensity throughout the time horizon but when costs are high, the control profile for u(t) does not start at
its maximum, umax = 1, rather at u(t) = 0.8 followed by a gradual decrease before it stabilizes at u(t) = 0.4 after
approximately 40 days from the start. Although this study is not exhaustive, it has illustrated the value of optimal control
theory as tool to suggest effective management strategies during FAW outbreaks. In future, we will explore the effects of
temperature and seasonal variation, migration of the moth and include the parameter of continuous replanting of maize
crops on the dynamics of FAW and its implications on maize biomass.
18
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