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Abstract: In this study, we present a non-autonomous model with a Holling type II functional
response, to study the complex dynamics for fall armyworm-maize biomass interacting in a periodic
environment. Understanding how seasonal variations affect fall armyworm-maize dynamics is critical
since maize is one of the most important cereals globally. Firstly, we study the dynamical behaviours
of the basic model; that is, we investigate positive invariance, boundedness, permanence, global
stability and non-persistence. We then extended the model to incorporate time dependent controls.
We investigate the impact of reducing fall armyworm egg and larvae population, at minimal cost,
through traditional methods and use of chemical insecticides. We noted that seasonal variations
play a significant role on the patterns for all fall armyworm populations (egg, larvae, pupae and
moth). We also noted that in all scenarios, the optimal control can greatly reduce the sizes of fall
armyworm populations and in some scenarios, total elimination may be attained. The modeling
approach presented here provides a framework for designing effective control strategies to manage
the fall armyworm during outbreaks.
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1. Introduction

Maize (Zea mays) is one of the most important cereals globally and is also referred as the “Queen
of Cereals” due to its high yield potential [1]. Demand for maize is increasing, not only because of its
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higher nutritional benefits but also its ability to feed the growing global population and contribution to
food security [2]. According to food and agriculture organization (FAO) [3], food security is a
“situation that exists when all people, at all times, have physical, social, and economic access to
sufficient, safe, and nutritious food that meets their dietary needs and food preferences for an active
and healthy life”.

In many African countries, agriculture remains an important contributor to food security, despite its
inability to provide sufficient output to meet the needs of most of their populations. One of the main
threats to food security in these countries is the recent invasion by fall armyworm, (FAW-Spodoptera
frugiperda), a major pest of maize [2, 3], native to tropical and subtropical parts of America [2–4],
where it has more than 350 different crop and non-crop host plants [4]. The FAW was first reported in
West and Central parts of Africa in 2016 but it rapidly spread to other parts of the continent with high
devastating effect on maize production [2, 5, 6].

According to Goergen et al [8], the infestation of African countries with the FAW has huge
consequences for their economies, agricultural yield and access to overseas markets [8]. It is
estimated that about $US13 billion per annum in crop losses throughout sub-Saharan Africa are due
to FAW infestation, thus, threatening the livelihoods with a majority of poor farmers [7, 9]. For
instance, a recent research on the impact of FAW on maize biomass in Ghana and Zambia revealed
that the national mean loss of maize crops was 45% (range 22–67%) and 40% (range 25–50%)
respectively [2].

Like any other insect pests, weather conditions in a season have an effect on maize biomass and
FAW dynamics. Prior studies on pest biology have shown that the distribution and abundance of pests
is largely influenced by relationship between their developmental rates and temperature [10, 11]. In
particular, different development stages of insects are favored by different temperature ranges, hence,
temperature variations influence the development rates, duration of life cycles, and, ultimately, the
survival of insects [11]. Furthermore, an increase in the ambient temperature to the near thermal
optimum for insects causes increase in their metabolism, and, consequently, their activities [11]. Since
temperature fluctuates in the natural environment, it follows that the development rates of insects vary
seasonally. For FAW in particular, prior studies suggest that, populations in a given area directly
depend on the time in a season, host plants availability, and weather conditions [5]. Under unfavourable
weather condition and scarcity of food for the development and reproduction, FAW is forced to migrate
to other suitable locations for survival [5, 12].

As the evidence for climate impacts on FAW has increased, it is imperative that the mathematical
models designed to explore the relationship between FAW and maize crops accommodate the effects
of seasonal variations. The main goal of this study is to develop and analyze a non-autonomous FAW-
maize interaction model. Despite a considerable number of studies on plant-pest interactions (see, for
example, [15–23]), there are few studies that have been devoted to explore FAW and maize interaction.

One of the notable recent mathematical models for FAW and maize interaction was proposed by
Faithpraise and coworkers [16] who evaluated the effects of biocontrol on managing FAW infestations
in cereal crops among several other outcomes. The findings from their study revealed that, biocontrol
could significantly control FAW infestations in cereal crops. Although this study improved the existing
knowledge on FAW, one of its limitations was that development rates for the pest were all assumed to
be constant yet in reality these depends on time. Thus, the present study is motivated by this existing
research gap. Our results are new and, to our knowledge, very little work has been done so far on
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modelling and analysing the effects of seasonal variation in a FAW-maize interaction model with a
saturation functional response.

2. Basic non-autonomous model

2.1. Model derivations

Biologically, maize seed planted at the beginning of the season at time t = 0 germinates in 0 − 7
days [13]. Depending on the variety of maize seed planted, harvest of this crop which occurs at the
end of the season (90–164) days is influenced by the weather variations within a season. Since maize
growth is affected by weather condition fluctuation, the growth rates of their parts such as leaves,
cobs, kernel, and stems which in fact called biomass according to Chowdhury and Battude [14,22] are
weather dependent [13]. Motivated by recent mathematical models for plant-pest interactions (see., for
example [15–23], in this study we develop a non-autonomous model for FAW infestations in a field
of maize biomass under assumption that (i) once the FAW moths migrate into the field, no migration
out of the field occurs before the harvest (ii) weather condition fluctuation in a season have an impact
on maize biomass and FAW dynamics. The developed model subdivides the FAW population of life
cycle into subclasses as: eggs population E(t), larvae population L(t), pupae population P(t) and adult
population which are also known as moth A(t). On the other hand, we let the variable M(t) denote the
population density of maize biomass which grow logistically in the absence of the larvae with carrying
capacity KM and a net seasonal growth rate r(t). We assume that larvae with a mortality rate µL(t) is
the only threat to maize biomass throughout its growth period and the adult moth takes over in the
reproduction process. The life cycle of FAW starts when eggs are laid in masses on maize biomass,
mostly underside of these biomass [36]. We also assume that production of FAW egg is a logistic

growth b(t)
[
1 −

E(t)
KE(t)

]
wA(t) with b(t) representing the average number of eggs laid by a proportion

w of moth, A(t) which are females. Since the growth of maize plants depends on seasonal variations,
it suffices to assume that the egg carrying capacity KE(t), egg hatching rate αE(t) and egg mortality
rate µE(t) are season-dependent. Furthermore, FAW larvae generally emerge simultaneously three to
five days following oviposition. Although, the FAW has six larval instar stages, we have considered
this as single group called larvae in order to reduce complexity of the model. Since the population size
of maize biomass is finite and independent of weather fluctuation and because the rate at which FAW
larvae consumes food decreases, a Holling type II functional response also known as the saturating
functional response is included in the equation capturing the dynamics of maize density and larvae
population with half saturation constant a(t). In particular, when FAW larvae feed on maize biomass,
the FAW larvae with an average duration of 1

αL(t) in the larval stage convert maize biomass into larvae’s
biomass at the rate e(t). Finally, pupation of the FAW normally occurs in the soil, at a depth of 2–8
cm [33]. We assume that, duration of the pupal stage with natural mortality rate µP(t) is denoted by 1

αP(t)
which after 8 days in the soil escapes as adult moth and start the cycle again. The model explanations
above can be represented schematically in Figure 1:
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Figure 1. Schematic representation of the model (1). The green square box represents Maize
biomass and the other dark red square boxes represent the four epidemiological stages of the
FAW, that is., egg E(t), larvae L(t), pupae P(t) and moth also known as the adult stage of FAW
A(t). Continuous arrows indicate either inflow or outflow transition between compartments.
Red dotted lines connecting compartments M(t) with compartments A(t) and L(t) shows the
interaction that occurs between the plant and adult FAW A(t) as well as the larvae L(t). Note
that the moth interacts with the maize plant when it lays eggs on maize biomass, while the
larvae feed on maize biomass.

The proposed model is summarized by the following system of nonlinear ordinary differential
Equations in (1)

dM(t)
dt

= r(t)
[
1 −

M(t)
KM

]
M(t) −

β(t)M(t)
a(t) + M(t)

L(t),

dE(t)
dt

= b(t)wA(t)
[
1 −

E(t)
KE(t)

]
− [µE(t) + αE(t)]E(t),

dL(t)
dt

= αE(t)E(t) +
eβ(t)M(t)

a(t) + M(t)
L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t),

dP(t)
dt

= αL(t)L(t) − [αp(t) + µP(t)]P(t),

dA(t)
dt

= αP(t)P(t) − µA(t)A(t).



(1)
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where µA(t) represents natural mortality rate of the moth (adult moth) and θ(t) is the density-dependent
death rate of larvae population. Thus, −θ(t)L2(t) reflects of predation, intra-specific and interspecific
competition that is known to exist on FAW larave population. Precisely, prior studies suggest that when
food is limited, the older FAW larvae exhibit a cannibalistic behavior on the smaller larvae [24, 25].

All model parameters that are functions of time depend on seasonal variations. For biological
significance, we assume that all these parameters are continuous and bounded functions defined on R+.

We now provide a comprehensive definition to model parameters that are meant to capture seasonal
fluctuations, that is;

r(t) = r0[1 + r1 cos(2πtω−1)], b(t) = b0[1 + b1 cos(2πtω−1)],
β(t) = β0[1 + β1 cos(2πtω−1)], KE(t) = KE01 + KE1 cos(2πtω−1),
a(t) = a0[1 + a1 cos(2πtω−1), αE(t) = αE0[1 + αE1 cos(2πtω−1),
µE(t) = µE0[1 + µE1 cos(2πtω−1), αL(t) = αL0[1 + αL1 cos(2πtω−1),
µL(t) = µL0[1 + µL1 cos(2πtω−1), θ(t) = θ0[1 + θ1 cos(2πtω−1),
αP(t) = αP0[1 + αP1 cos(2πtω−1), µA(t) = µA0[1 + µA1 cos(2πtω−1),
µP(t) = µP0[1 + µP1 cos(2πtω−1), e(t) = e0[1 + e1 cos(2πtω−1)],


(2)

where ω > 0 represent the period. Further, r0, β0, KE0 , a0, b0, αE0 , µE0 , e0, αL0 , µL0 , θ0, αP0 and µA0

are the baseline values or the time averages of r(t), KE(t), b(t), αE(t), µE(t), e(t), β(t), αL(t), µL(t), θ(t),
αP(t), µA(t), a(t), respectively, and r1, KM1 , β1, KE1 , a1, b1, αE1 , µE1 , e1, αL1 , µL1 , θ1, αP1 and µA1 denote
the magnitude of seasonal fluctuations. Note that 0 < r1 < 1, 0 < β1 < 1, 0 < KE1 < 1, 0 < a1 < 1,
0 < b1 < 1, 0 < αE1 < 1, 0 < µE1 < 1, 0 < e1 < 1, 0 < αL1 < 1, 0 < µL1 < 1, 0 < θ1 < 1, 0 < αP1 < 1
and 0 < µA1 < 1. From Eq (2) we can observe that all model parameters that account for seasonal
fluctuations are periodic (with period ω > 0 days), continuous and bounded below and above. Since∣∣∣cos(2πtω−1)

∣∣∣ ≤ 1 and 0 < r1 < 1, it follows that:

r0(1 − r1) ≤ r(t) ≤ r0(1 + r1). (3)

Therefore, we conclude that r(t) is bounded below and above. By following the same approach one
can easily verify that all the other periodic model parameters are bounded below and above. Next, we
investigate the dynamics of system (1), in particular we will focus on the positive invariance,
nonpersistence, permanence, global attractivity of the bounded positive solutions and the boundary
solution.

2.2. Positivity, boundedness and permanence of model solutions

In this subsection, we will prove for positivity, boundedness, global asymptotic stability of the
bounded positive solution and permanence of system (1).

Definition 1. The set of solution for the system (1) is said to be ultimately bounded if ∃M > 0, such
that for each solution (M(t), E(t), L(t), P(t), A(t)) of (1), there ∃T > 0, such that ‖(M(t), E(t),
L(t), P(t), A(t))‖ ≤ M ∀t > T, withM independent of a particular solution and T may depend on the
solution.

Definition 2. Model system (1) is said to be permanent if there exists δ+ and ∆+ with 0 < δ+ < ∆+ such
that:

min
{
lim inf

t→+∞
M(t), lim inf

t→+∞
E(t), lim inf

t→+∞
L(t), lim inf

t→+∞
P(t), lim inf

t→+∞
A(t)

}
≥ δ and,
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max
{

lim sup
t→+∞

M(t), lim sup
t→+∞

E(t), lim sup
t→+∞

L(t), lim sup
t→+∞

P(t), lim sup
t→+∞

A(t)
}
≤ ∆,

for all solutions of (1) with initial values being positive hold. Model system (1) is said to be non-
persistent if there exists a positive solution (M(t), E(t), L(t), P(t), A(t)) of system (1) satisfying:

min
{
lim inf

t→+∞
M(t), lim inf

t→+∞
E(t), lim inf

t→+∞
L(t), lim inf

t→+∞
P(t), lim inf

t→+∞
A(t)

}
= 0.

Given u ∈ C(R), we define Φ(u(s)) =
u(s)

a(s) + u(s)
and observe that, Φ(u) is a monotonic increasing

function. Defining;

M1 = supt∈R{KM}, m1 = inft∈R

{KM

r(t)
[r(t) − β(t)M3]

}
,

M2 = supt∈R

{ b(t)wM5

b(t)wM5 + αE(t) + µE(t)

}
, m2 = sup

t∈R

{ b(t)wm5

b(t)wm5 + αE(t) + µE(t)

}
,

M3 = supt∈R

{
αE(t)M2 +

eβ(t)Φ(M1)(t) − (µL(t) + αL(t))
θ(t)

}
, M4 = sup

t∈R

{
αL(t)M3

µP(t) + αP(t)

}
,

M5 = supt∈R

{
αP(t)M4

µA(t)

}
, m3 = inf

t∈R

{
αE(t)m2 +

eβ(t)Φ(m1)(t) − (µL(t) + αL(t))
θ(t)

}
,

m4 = inft∈R

{
αL(t)m3

µP(t)

}
, m5 = inf

t∈R

{
αP(t)m4

µA(t)

}
.



(4)

Then, we define condition (H1) using Eq (4) as follows:

(H1) :


inft∈R{[r(t) − β(t)M3]} > 0,

inft∈R

{
αE(t)M2 +

eβ(t)Φ(M1)(t) − (µL(t) + αL(t))
θ(t)

}
> 0,

inft∈R

{
αE(t)m2 +

eβ(t)Φ(m1)(t) − (µL(t) + αL(t))
θ(t)

}
> 0.


(5)

Using condition (H1) in Eq (5), we define the set:

Ω =


(
M(t), E(t), L(t), P(t), A(t)

) ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 ≤ M(t) ≤ M1,

m2 ≤ E(t) ≤ M2,

m3 ≤ L(t) ≤ M3,

m4 ≤ P(t) ≤ M4,

m5 ≤ A(t) ≤ M5


.

Based on definitions 1 and 2, we have Theorem 1 and its proof is in Appendix A.

Theorem 1.
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(i) The solution set Ω of the system (1) is said to be positively invariant if condition (H1) holds and it is
permanent if the solution set Ωδ of the system (1) defined by:

Ωδ =


(
M(t), E(t), L(t), P(t), A(t)

) ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mδ
1 ≤ M(t) ≤ Mδ

1,

mδ
2 ≤ E(t) ≤ Mδ

2,

mδ
3 ≤ L(t) ≤ Mδ

3,

mδ
4 ≤ P(t) ≤ Mδ

4,

mδ
5 ≤ A(t) ≤ Mδ

5,


.

is ultimately a bounded region of (1), where δ > 0 sufficiently small so that mδ
i > 0(i = 1, ..., 5) and

condition (H1) holds when Mi and mi are replaced by Mδ
i and mδ

i , respectively. Further, we define
Mδ

i =Mi + δ, mδ
i = mi − δ.

(ii) System (1) has at-least one ω− periodic solution (M∗(t), E∗(t), L∗(t), P∗(t), A∗(t)) ∈ Ω if condition
(H1) holds.

Biological implications of Theorem 1: Theorem 1 implies that model system (1) is biologically well-
poised, that is., the population of species under consideration are non-negative and bounded.

3. Dynamical behaviors of the non-autonomous model with optimal control

3.1. Model formulation

In this section, we extend the basic system (1) to incorporate time dependent intervention strategies
with the main goal of reducing FAW egg and larvae populations. Considering the extent of damage
FAW can cause in a short period of time, it is imperative that once this pest has been identified in a
maize field, necessary control approaches should be implemented timeously. Prior studies suggest that
the effective management of FAW depends on the integration of several control strategies which include
biological control, host-plant resistance, and use of chemical insecticides [6]. Here, we reformulate
system (1) to incorporate new parameter u1(t) and u2(t). Control u1(t) models the efforts of traditional
control methods like handpicking and destruction of FAW egg masses and larvae on FAW dynamics.
Control u2(t) accounts for the efforts of chemical pesticide use on FAW dynamics. Without loss in
generality, herein we will use the term traditional methods to denote handpicking and destruction of
FAW egg masses and larvae. Utilizing similar variable and parameter names as in Eq (1), the new
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system of nonlinear differential equations incorporating time dependent controls is given by:

dM(t)
dt

= r(t)
[
1 −

M(t)
KM

]
M(t) −

M(t)β(t)
M(t) + a(t)

L(t),

dE(t)
dt

= b(t)wA(t)
[
1 −

E(t)
KE(t)

]
− [αE(t) + µE(t) + u1(t)]E(t),

dL(t)
dt

= αE(t)E(t) +
eβ(t)M(t)

a(t) + M(t)
L(t) − [αL(t) + µL(t) + u1(t) + u2(t)]L(t) − θ(t)L2(t),

dP(t)
dt

= αL(t)L(t) − [αp(t) + µP(t)]P(t),

dA(t)
dt

= αP(t)P(t) − µA(t)A(t).



(6)

As we can observe, control efforts u1(t) aims to reduce the egg and larvae population while the use
of chemical insecticide u2(t) mainly reduces the density of larvae population only. For Eq (6) to be
biologically meaningful we set:

M(0) ≥ 0, E(0) ≥ 0, L(0) ≥ 0, P(0) ≥ 0, A(0) ≥ 0.

The control set for the controls is defined as:

Γ = {(u1(t), u2(t)))
∣∣∣ 0 ≤ u1(t) ≤ u1 max, 0 ≤ u2(t) ≤ u2 max}, (7)

where u1 max and u2 max represents the upper bounds for the efforts of traditional methods and use of
chemical insecticide respectively. If ui = 0, (i = 1, 2), it implies absence of time dependent control
measures.

A control strategy is said to be successful control strategy if it can reduce the egg and larvae
population thereby reducing or eradicating FAW population in the field. As such, our aim here is to
identify a pair of characterized control strategy (u∗1, u

∗
2) that reduces the population of FAW egg and

larvae at minimal cost. To obtain a pair of characterized control strategy (u∗1, u
∗
2), we propose an

objective functional with quadratic in control which according to Lahrouz and Gaff [34, 35], (i)
controls will not disappear after differentiation and this implies that the solution is unique (ii) all
control strategies (u∗1, u

∗
2) are bounded implying that efforts for implementing these controls are also

bounded and characterized. Thus, the following objective functional is proposed:

J(u1(t), u2(t)) =

∫ T

0

[
C1E(t) + C2L(t) +

W1

2
u2

1(t) +
W2

2
u2

2(t)
]

dt . (8)

subject to the constraints (6) and where C1, C2, W1 and W2 are balancing coefficients (non-negative)
converting the integrals into monetary quantity over a finite period of time, T days.

The optimal control problem, thus, becomes that, we seek optimal functions, (u∗1(t), u∗2(t)), so that:

J(u∗1(t), u∗2(t)) = min
U

J(u1(t), u2(t)) (9)
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subject to the state equations in system (6) with initial conditions. In order to study the existence of an
optimal control pair (u∗1, u

∗
2), we will make use of Fleming and Rishel’s work [30]. Theorem 2 (i) and

(ii) state the existence of the optimal controls and their characterization.

Theorem 2.

(i) There ∃ an optimal control pair (u∗1, u
∗
2) to the problem (6).

(ii) Given an optimal control u = (u1, u2) ∈ U and corresponding state solutions M, E, L, A and P,
there exists adjoint functions λi, i = 1, ..., 5 satisfying:

dλ1

dt
= −

[
r(t) −

2r(t)M(t)
KM

−
β(t)L(t)

a(t) + M(t)
+

β(t)L(t)M(t)
(a(t) + M(t))2

]
λ1(t)

−

[
eβ(t)L(t)M(t)
a(t) + M(t)

−
eβ(t)L(t)M(t)
(a(t) + M(t))2

]
λ3(t),

dλ2

dt
= −C1 +

[
b(t)wA(t)

KE(t)
+ αE(t) + µE(t) + u1(t)

]
λ2(t) − αE(t)λ3(t),

dλ3

dt
= −C2 +

β(t)M(t)
a(t) + M(t)

λ1(t) −
[

eβ(t)M(t)
a(t) + M(t)

− 2θ(t)L(t) − αL(t) − µL(t)
]
λ3(t)

+[u1(t) + u2(t)]λ3(t) − αL(t)λ4(t),
dλ4

dt
= (αP(t) + µP(t))λ4(t) − αP(t)λ5(t),

dλ5

dt
= −b(t)w

(
1 −

E(t)
KE(t)

)
λ2(t) + µA(t)λ5(t), (10)

with transversality condition λi(T ) = 0, for i = 1, ..., 5. Moreover, these optimal controls are
characterized by:

u1 = min
[
u1 max,max

(
E(t)λ2(t) + L(t)λ3(t)

W1
, 0

)]
,

u2 = min
[
u2 max,max

(
L(t)λ3(t

W2
, 0

)]
 (11)

Theorem 2(i) There exists an optimal control pair (u∗1, u
∗
2) to the problem (6).

Proof. Suppose that f(t, x,u) be the right hand side of the (6) whereby x = (M, E, L, P, A) and
u = (u1(t), u2(t)) represent the vector of state variables and control functions respectively. We list the
requirements for the existence of optimal control as presented in Fleming and Rishel (1975) [30]:

1) The function f is of class C1 and there exists a constant C such that |f(t, 0, 0)| ≤ C, |fx(t, x,u)| ≤
C(1 + |u|), |fu(t, x,u)| ≤ C;

2) the admissible set of all solutions to system (6) with corresponding control in Ω is non empty;
3) f(t, x,u) = a(t, x) + b(t, x)u;
4) the control set U = [0, u1 max] × [0, u2 max] is compact, closed, and convex;
5) the integrand of the objective functional is convex in U.
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To verify these conditions, we write:

f(t, x,u) =



r(t)M(t)
[
1 −

M(t)
KM

]
−

β(t)M(t)
a(t) + M(t)

L(t),

b(t)wA(t)
[
1 −

E(t)
KE(t)

]
− [αE(t) + µE(t) + u1(t)]E(t),

αE(t)E(t) +
eβ(t)M(t)

a(t) + M(t)
L(t) − [αL(t) + µL(t) + u1(t) + u2(t)]L(t) − θ(t)L2(t),

αL(t)L(t) − [αp(t) + µP(t)]P(t),
αP(t)P(t) − µA(t)A(t).


. (12)

From Eq (12), it is evident that f(t, x,u) is of class C1 and |f(t, 0, 0)| = 0. Furthermore, one can easily
compute |fx(t, x,u)| and |fu(t, x,u)|, and demonstrate that:

|f(t, 0, 0)| ≤ C, |fx(t, x,u)| ≤ C(1 + |u|) and |fu(t, x,u)| ≤ C.

Due to the condition 1, the existence of the unique solution for condition 2 for bounded control is
satisfied. On the other hand, the quantity f(t, x,u) is expressed as a linear function of the control
variables which satisfy the condition 3. �

Theorem 2(ii) Given an optimal control u = (u1, u2) ∈ U and corresponding state solutions M, E, L, P
and P, there exists adjoint functions λi, i = 1, 2, 3, 4, 5 satisfying Eqs (10) and (11).

Proof. To characterize our optimal control problem we use Pontryagin’s Maximum Principle [31], to
formulate the following Hamiltonian function:

H(t) = C1E(t) + C2L(t) +
W1

2
u2

1(t) +
W2

2
u2

2(t)

+λ1(t)
[
r(t)M(t)

[
1 −

M(t)
KM

]
−

β(t)M(t)
a(t) + M(t)

L(t)
]

+λ2(t)
[
b(t)wA(t)

[
1 −

E(t)
KE(t)

]
− [αE(t) + µE(t) + u1(t)]E(t)

]
+λ3(t)

[
αE(t)E(t) +

eβ(t)M(t)
a(t) + M(t)

L(t) − [αL(t) + µL(t) + u1(t) + u2(t)]L(t) − θ(t)L2(t)
]

+λ4(t)
[
αL(t)L(t) − [αp(t) + µP(t)]P(t)

]
+λ5(t)

[
αP(t)P(t) − µA(t)A(t)

]
.

Next we determine the adjoint equations as follows;
∂λi

dt
= −

∂H
∂x

, where
x = (M(t), E(t), L(t), P(t), A(t)), with transversality condition λi(T ) = 0 for i = 1, 2, 3, 4, 5, and
obtained the results in equation (10). Now, we minimize the Hamiltonian with respect to the controls.

Note that we have required the convexity for minimization,
∂2H
∂u2

i

= Wi > 0, i = 1, 2. On the interior of

the control set, we have:

∂H
∂u1

= 0⇒ u1 =
E(t)λ2(t) + L(t)λ3(t)

W1
, and,

∂H
∂u2

= 0⇒ u2 =
L(t)λ3(t

W2
.

}
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Using the standard arguments and the bounds for the controls, one gets the characterization of this
optimal pair (11). �

3.2. Numerical results

In this section, we support analytical results of this study by simulating model (6) by making use of
the following assumed initial conditions:E(0) = 500, L(0) = 0, P(0) = 0, A(0) = 500, and M(0) = 10,
as well as parameter values in Table 1.

Table 1. Model parameters and their baseline values.

Parameter definition Symbol Baseline value Source

Average eggs laid per female moth per day b0 125 [32]
Proportion of adult female moths w 0.5 [12]
Average duration of egg stage α−1

E0 3(3–5)Days [32]
Development time of the larva α−1

L 14 (14–30)Days [32]
Development time of pupae α−1

P0 9(8-30)Days [32]
Moth life span µ−1

A0 18(15–21) Days [32]
Maximum biomass of maize plants KM 50 kg plant−1 [36].
Egg environmental carrying capacity KE0 108 [36].
Averaged natural death rate of immature stages µE0, µL0, µP0 0.01 Day−1 [36].
Rate of plant attack by larvae β0 5 × 10−8Day−1 [36].
Growth rate of maize plants r0 0.05 Day−1 [36].
Efficiency of biomass conversion e 0.2 [36].
Average density dependent mortality rate θ0 0.008 Day−1 [36].
Half saturation constant a0 0.8 Estimate.

Without loss of generality, we will fix all parameters that model the amplitude of seasonal dependent
parameters (r1, KM1 , β1, KE1 , a1, b1, αE1 , µE1 , e1, αL1 , µL1 , θ1, αP1 and µA1) to 0.8. Furthermore, we set
ω = 7, that is., a small period was considered since the life span of FAW and maize in the field is very
short.

It is worth noting that numerical simulations presented here were obtained by solving system (6)
using the forward-backward sweep method [37] and the parameter values in Table 1. In addition, we
considered the following assumed initial conditions; E(0) = 500, L(0) = 0, P(0) = 0, A(0) = 500,
and M(0) = 10. The initial step of the forward-backward sweep method is to assign an initial guess for
the controls and then solve the system forward in time, followed by solving the adjoint state backward
in time. Then these optimal controls are updated for optimality using the Hamiltonian of the optimal
system. “The controls are then updated by using a convex combination of the previous controls and the
value from the characterizations of the controls. This process is repeated and iterations are ceased if the
values of the unknowns at the previous iterations are very close to the ones at the present iterations”
[37]. For a detailed discussion we refer the reader to [37]. The numerical results presented in this
Section are based on the following scenarios:

(i) Effects of implementing traditional control measures alone,

(ii) Effects of implementing time-dependent use of chemical insecticides alone, and
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(iii) Effects of combining time-dependent traditional methods with use of chemical insecticides.

In addition, since the impact of larvae on maize is so apparent, we will assume that C1 ≤ C2, that
is, the minimization of caterpillars is more important than that of FAW eggs. Furthermore, traditional
methods of controlling FAW are known to be less costly compared to chemical insecticides and as
such, we will assume that W1 < W2 .

3.2.1. Effects of implementing traditional control measures alone

In resource limited settings, majority of the farmers cannot purchase pesticides to control FAW
whenever there is an outbreak and more often they rely on traditional methods like handpicking and
destroying of egg masses and larvae. Here, we seek to understand the effects of time dependent
implementation of such methods on the dynamics of FAW and maize interaction. To investigate this
scenario, we simulated model (6) with u1 , 0 (0 ≤ u1 ≤ 0.1) and u2 , 0 and we obtained the results
illustrated in Figure 2. As we can observe, the dynamics of the maize biomass and FAW populations,
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Figure 2. Solution of model (6) with and without optimal control under scenario 1: u1 , 0
and u2 = 0. We set 0 ≤ u1(t) ≤ 0.1. In (a)–(e), the red solid trend-lines represents the
dynamics of the respective populations in the absence of control and the blue solid curves
depict the dynamics in the presence of control. Fig. (f) illustrates the optimal control profile.
As we can observe, with control u1(t) being implemented, the respective populations of the
FAW decrease compared to when there are no controls.
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with and without control, will be associated with oscillations which reflect seasonal variations.
Further, we can also observe that without control, the maize biomass may not exceed 15 kg per plant,
however, with timely control, the biomass may exceed 25 kg per plant by the final time horizon
(t = 150). Moreover, although traditional methods will be capable of reducing FAW population and
increasing maize biomass, they will not be able to completely eliminate the pest. Figure 2(f) portrays
the optimal control profiles for u1(t). We clearly observe that u1(t) starts from the maximum
(u1 = 0.1) and stays at that level for the entire duration. From the pattern of the optimal control profile
we can conclude that a desirable outcome can be achieved only if the traditional methods are
implemented throughout the entire time horizon.

3.2.2. Effects of implementing time-dependent use of chemical insecticides alone

Despite being expensive, chemical insecticides are known to be more efficient compared to
traditional methods on controlling FAW. To explore the impact of chemical control measures on FAW
dynamics we simulated model (6) with u1 = 0 and 0 < u2(t) < 0.1 and the results are depicted in
Figure 3. When chemical insecticides are used, we can note that the population of FAW may become
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Figure 3. Solution of model (6) with and without optimal control under scenario 2: 0 < u1 ,

0 and 0 < u2 ≤ 0.1.

extinct in a period of 50 days. Moreover, the maize biomass per plant may exceed 35 kg per plant by
the final time (t = 150 days). Comparing the results portrayed in Figures 2 and 3, we conclude that
the use of chemical insecticides should be encouraged since the final biomass will be higher
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compared to when farmers rely on traditional methods only. The control profile for control u2(t) starts
from the maximum initially, but only for a very short time (t < 50), followed by a decrease to some
lower level till the final time horizon. This may attribute to the decrease in FAW populations. Hence,
we conclude that for chemical insecticides, intensity use needs to be maintained at maximum for a
period of approximately 50 days, thereafter the intensity may be reduced till the final time.

3.2.3. Effects of combining time dependent traditional methods with use of chemical insecticides

To understand the impact of combining traditional methods with use of chemical insecticides, we
simulated model (6) with 0 < u1(t) ≤ 0.1 and 0 < u2(t) ≤ 0.1 over period of 150 days and the solution
results are depicted in Figure 4. We can note that when traditional methods are combined with chemical
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Figure 4. Solution of model (6) with and without optimal control under scenario 3: 0 < u1 ≤

0.1 and 0 < u2 ≤ 0.1.

insecticides use then the time taken to eliminate the FAW from the field is less than the time that will
be taken if chemical insecticides were in use (Figure 4). Although the time required to eliminate the
FAW populations will decrease, the final maize biomass may not be significantly different from that
obtained when only chemical insecticides were in use (Figure 3). In Figure 4(f), we can observe that
the control profiles for u1(t) and u2(t) starts at their respective maximum initially, but only for a very
short time, followed by a decrease to some lower level till the final time. It is worth noting that the
control profile for u1(t) remain at its maximum for a slightly longer period compared to that of u2(t) and
this can be attributed to less cost associated with traditional methods relative to chemical insecticides
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use. As such we can conclude that when traditional methods are combined with chemical insecticides
use, chemical control efforts may be ceased after approximately 50 days and the traditional methods
can be implemented for additional 50 days or more but at low intensity. To assess the effects of costs
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Figure 5. Simulation results for model system (1) illustrating the effects of varying the
weights, W1 and W2. We set 0 ≤ u1 ≤ 0.1, 0 ≤ u2 ≤ 0.1, C1 and C2 are fixed to 1 and 2,
respectively, and the rest of the model parameters are as in Table 1.

on implementing the control efforts u1(t) and u2(t), we varied the weight constants W1 and W2 and the
results are illustrated in Figure 5. From the results we can note that if the costs are low, for example,
W1 = W2 = 0.1 then the associated control profile starts at their respective maximum and stays there
till the final time horizon. However, as the cost increases the respective control profile starts at their
respective maxima and stays there for a reduced duration compared to when the costs are low. In
particular, as the cost increases the control profile for u2(t) stays at its maxima for a relatively short
duration compared to that of u1(t). In a nutshell, we can deduce that depending on the cost parameters
associated with the control, the optimal profiles of u1(t) and u2(t) stay at their respective maxima for a
longer duration, before eventually settling at their minimum levels.

4. Conclusions

We have formulated a mathematical model to investigate the effects of seasonal variations on the
dynamics of maize biomass and FAW interaction. After a comprehensive analysis of the dynamical
behavior of the proposed framework, we extended it to incorporate time-dependent control strategies,
namely traditional methods (like handpicking and destruction of egg masses and larvae) and the use
of chemical insecticides. Our optimal control is aimed at minimizing the numbers of the eggs and
larvae population at minimal costs. Our results show that, in all the scenarios, the optimal control can
greatly reduce the FAW population and in some instances, complete elimination of the pest may be
attained. Future research could expand our analysis to include climate-sensitive aspects of FAW such
as temperature and predict changes in population dynamics at various temperature ranges.
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Appendix

A. Proof of Theorem 1 and the discussion on global asymptotic stability of the boundary solution

In this section, we will provide the proof of Theorem 1 and we will discuss the global asymptotic
stability of the boundary solutions of the model. We will begin our discussion by considering
Theorem 1 (i):

To prove Theorem 1 (i), we will make use of the lemma as given by Bai et al [26], which was used
to demonstrate the permanence of a non-autonomous prey-predator model with a generalist predator.
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Lemma 1. Suppose p(t) and q(t) are bounded and continuous functions in R with inft∈R p(t) > 0 and
inft∈R q(t) > 0. If there exist a positive function u(t) which satisfies:

u′(t) ≤ p(t)u(t) − q(t)u2(t), t ∈ [t0,+∞),

then lim supt→+∞ u(t) ≤ supt∈R
p(t)
q(t) . Moreover, u(t) ≤ supt∈R

p(t)
q(t) for all t ∈ [t0,+∞) if 0 < u(t0) ≤

supt∈R
p(t)
q(t) . On the other hand, if u(t) satisfies:

u′(t) ≥ p(t)u(t) − q(t)u2(t), t ∈ [t0,+∞),

then lim inft→+∞ u(t) ≥ inft∈R
p(t)
q(t) .Moreover, u(t) ≥ inft∈R

p(t)
q(t) for all t ∈ [t0,+∞) if 0 < u(t0) ≥ inft∈R

p(t)
q(t) .

We now demonstrate the proof for Theorem 1 as follows; Considering system (1), we have the
following expressions:

M(t) = M(t0) exp
{∫ t

t0

[
r(s)M(s)

[
1 −

M(s)
KM

]
−

β(s)M(s)
a(s) + M(s)

L(s)
]
ds

}
,

E(t) = E(t0) exp
{∫ t

t0

[
b(s)wA(s)

[
1 −

E(s)
KE(s)

]
− [αE(s) + µE(s)]E(s)

]
ds

}
,

L(t) = L(t0) exp
{∫ t

t0

[
αE(s)E(s) +

eβ(s)M(s)
a(s) + M(s)

L(s) − [αL(s) + µL(s)]L(s)

−θ(s)L2(s)
]
ds

}
,

P(t) = P(t0) exp
{∫ t

t0

[
αL(s)L(s) − [αp(s) + µP(s)]P(s)

]
ds

}
,

A(t) = A(t0) exp
{∫ t

t0

[
αP(s)P(s) − µA(s)A(s)

]
ds

}
.



(13)

From Eq (13), we can observe that all the solutions of model (1) are non-negative. We now
demonstrate that, the solution set Ω of the system (1) is positively invariant. Let (M(t), E(t), L(t), P(t),
A(t)) be a unique solution of system (1) with (M(t0), E(t0), L(t0), P(t0), A(t0)) ∈ Ω. From the first
equation of (1) and the positivity solutions of (1), we have:

M′(t) ≤ r(t)M(t)
[
1 −

M(t)
KM

]
, t ≥ t0,

and by Lemma 1 and 0 < M(t0) ≤ M1, M(t) ≤ M1, t ≥ t0. Considering the second equation of the
system (1), we have:

E(t) ≤ b(t)wA(t) − [b(t)wA(t) + αE(t) + µE(t)]E(t)
≤ b(t)wM5 − [b(t)wM5 + αE(t) + µE(t)]E(t), , t ≥ t0,

by Lemma 1 and 0 < E(t0) ≤ M2, E(t) ≤ M2, t ≥ t0. From the third equation of model (1), we have:

L′(t) ≤ αE(t) + eβ(t)Φ(M1)(t)L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t), t ≥ t0,
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by Lemma 1 and 0 < L(t0) ≤ M3, L(t) ≤ M3, t ≥ t0. From the fourth equation of system (1), we have:

P′(t) ≤ [µP(t) + αP(t)]
[

αL(t)M3

[µP(t) + αP(t)]
− P(t)

]
, t ≥ t0,

by Lemma 1 and 0 < P(t0) ≤ M4, P(t) ≤ M4, t ≥ t0. From the last equation of system (1), we have:

A′(t) ≤ µA(t)
[
αP(t)M4

µA(t)
− A(t)

]
, t ≥ t0.

Again from the first equation of system (1), we have:

M′(t) ≥ r(t)M(t) −
r(t)
KM

M2(t) − β(t)L(t)M(t),

≥ (r(t) − β(t)M3) −
r(t)
KM

M2(t), t ≥ t0,

and by Lemma 1 and M(t0) ≥ m1 > 0, we get M(t) ≥ m1, t ≥ t0. From the second equation of system
(1), we have:

E(t) ≥ b(t)wA(t) − [b(t)wA(t) + αE(t) + µE(t)]E(t)
≥ b(t)wm5 − [b(t)wm5 + αE(t) + µE(t)]E(t), t ≥ t0.

By Lemma 1 and E(t0) ≥ m2 > 0, it follows that E(t) ≥ m2, holds for t ≥ t0. From the third equation of
system (1), we have:

L′(t) ≥ αE(t) + eβ(t)Φ(m1)(t)L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t), t ≥ t0,

It follows from Lemma 1 and L(t0) ≥ m3 > 0 thatL(t) ≥ m3, holds for t ≥ t0. From the fourth equation
of system (1), we have:

P′(t) ≥ [µP(t) + αP(t)]
[

αL(t)m3

[µP(t) + αP(t)]
− P(t)

]
, t ≥ t0,

By Lemma 1 and P(t0) ≥ m4 > 0 we have thus P(t) ≥ m3, holds fo t ≥ t0. Furthermore, from the last
equation of system (1), we have:

A′(t) ≥ µA(t)
[
αP(t)m4

µA(t)
− A(t)

]
, t ≥ t0,

which implies that by Lemma 1 and A(t0) ≥ m5 that A(t) ≥ m5 holds ∀t ≥ t0. Hence, the solution set Ω

of the system (1) is positive invariant.
Suppose if the condition (H1) holds, now we prove that the model system (1) is permanent. We

let (M(t), E(t), L(t), P(t), A(t)) be a unique solution of system (1) with positive initial value (M(t0),
E(t0), L(t0), P(t0), A(t0)). Choose δ > 0 which is sufficiently small so that mδ

i (i = 1, 2, 3, 4, 5), and each
inequality of (H1) holds whenMi and mi are replaced byMδ

i > 0 and mδ
i > 0, respectively. By Lemma

1, it follows that lim supt→+∞ M(t) ≤ M1, which follows that there exists T0 > t0 such that for t > T0,
M(t) ≤ Mδ

1. Then from the first equation of system (1), we have:

M′(t) ≤ r(t)M(t) −
r(t)
KM

M2(t), t > T0,
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which yields by Lemma 1 that:

lim sup
t→+∞

M(t) ≤ sup
t∈R
{KM}.

Hence, by the arbitrariness of δ, we obtain lim supt→+∞ M(t) ≤ M1. Then, there exists T1 > T0 such
that for t > T1, M(t) ≤ Mδ

1, and:

E(t) ≤ b(t)wMδ
5 − [b(t)wMδ

5 + αE(t) + µE(t)]E(t), t > T1.

It follows from Lemma 1 and inft∈R{b(t)wMδ
5 − [b(t)wMδ

5 + αE(t) + µE(t)]E(t)} > 0 that

lim sup
t→+∞

E(t) ≤ sup
t∈R

{
b(t)wMδ

5

[b(t)wMδ
5 + αE(t) + µE(t)]E(t)

}
.

Hence, by the arbitrariness of δ, we have lim supt→+∞ E(t) ≤ M2, and there exists T2 > T1 such that for
t > T2, E(t) ≤ Mδ

2, and

L′(t) ≤ αE(t) + eβ(t)Φ(Mδ
1)(t)L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t), t > T2,

It follows from Lemma 1 and inft∈R{eβ(t)Φ(Mδ
1)(t)L(t) − [αL(t) + µL(t)]} > 0 that:

lim sup
t→+∞

L(t) ≤ sup
t∈R

{
αE(t)Mδ

2 +
eβ(t)Φ(Mδ

1)(t) − (µL(t) + αL(t))
θ(t)

}
.

Hence, by the arbitrariness of δ, we have lim supt→+∞ L(t) ≤ M3, and there exists T3 > T2 such that for
t > T3, L(t) ≤ Mδ

3, and:

P′(t) ≤ αL(t)Mδ
3 − (µP(t) + αP(t))P(t), t > T3,

which yields by Lemma 1 that:

lim sup
t→+∞

P(t) ≤ sup
t∈R

{ αL(t)Mδ
3

[µP(t) + αP(t)]

}
.

Hence, by the arbitrariness of δ, we obtain lim supt→+∞ P(t) ≤ M4. Then, there exists T4 > T3 such that
for t > T4, P(t) ≤ Mδ

4, and:

A′(t) ≤ αP(t)Mδ
4 − µA(t)P(t), t > T4,

which yields by Lemma 1 that:

lim sup
t→+∞

A(t) ≤ sup
t∈R

{αP(t)Mδ
4

µA(t)

}
.

Hence, by the arbitrariness of δ, we obtain lim supt→+∞ A(t) ≤ M5. Then, there exists T5 > T4 such that
for t > T4, A(t) ≤ Mδ

5. This completes the proof of Theorem 1(i).
In what follows, we will investigate the global asymptotic stability of the boundary solution. We

will assume that the maize biomass is the only food source for the FAW in this case; such that in the
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absence of the maize plant biomass, the FAW population becomes extinct. Hence the only boundary
solution of system (1) is (M(t), 0, 0, 0, 0). Substituting this boundary solution into system (1) one gets:

dM(t)
dt

= r(t)M(t)
(
1 −

M(t)
KM

)
. (14)

Equation (14) is well known non-autonomous logistic equation. As illustrated in equation (3), r(t)
is continuous ω−periodic, bounded below and above by positive constants. According to Fan and
Wang [27], we have the following results:

Lemma 2. (Reference [27]): If r(t) is a continuous ω− periodic function, and bounded below and
above by strictly positive reals for all t ∈ R, the logistic Eq (14) has exactly a solution Mg(t) bounded
below and above by positive constants. Precisely, this solution is given by:

Mg(t) =

[
exp

( ∫ ω

0
r(s)ds

)
− 1

]
·

[ ∫ t+ω

t

r(s)
KM
· exp

(
−

∫ t

s
r(τ)dτ)ds

)]−1

. (15)

In addition, Mg(t) is globally asymptotically stable for M(t) with positive initial value M(t0) = M0 > 0
in the sense limt→+∞ |M(t) − Mg(t)| = 0.

By Lemma 2, we obtain the following result:

Lemma 3. System (1) admits a unique positive ω−periodic solution Mg(t), 0, 0, 0, 0) which is globally
asymptotically stable for M(t) with positive initial value M(t0) = M0 > 0 in the sense
limt→+∞ |M(t) − Mg(t)| = 0.

For a continuous and periodic function g(t) with periodic ω, we denote:

A(g) :=
1
ω

∫ ω

0
g(t)dt. (16)

Lemma 4. (Reference [28]): If r(t) is a continuous ω−periodic function, then the null solution of (14)
is globally asymptotically stable provided that one of the following two conditions is met:

(1)A(r) < 0;

(2)A(r) = 0, andA(r/KM) < 0.

Note: IfA(r) > 0 andA(r/KM) > 0, then (14) has a unique positive ω−periodic solution Mg(t) which
is globally asymptotically stable (see Tineo [29]). Thus, when r/KM is non-negative with
A(r/KM) > 0, the null solution of (14) is globally stable if and only ifA(r) ≤ 0.

Finally, we we provide the proof of Theorem 1(ii):

Define a Poincare mapping F : R5 → R5 as follows:

F (ξ) = (M(t0 + ω, t0, ξ), E(t0 + ω, t0, ξ), L(t0 + ω, t0, ξ), P(t0 + ω, t0, ξ), A(t0 + ω, t0, ξ))
ξ = (M0, E0, L0, P0, A0) ∈ R5,
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where (M(t0+ω, t0, ξ), E(t0+ω, t0, ξ), L(t0+ω, t0, ξ), P(t0+ω, t0, ξ), A(t0+ω, t0, ξ)) represents the solution
of (1) through (t0, ξ), ξ = (M0, E0, L0, P0, A0) ∈ R5. By the positive invariant property of Ω, F (Ω) ∩Ω.

The continuity of F can be guaranteed by the continuity of solution of Eq (1) with respect to initial
value. Note that Ω is closed, bounded, convex set in R5. Therefore, it follows from Brouwer’s theorem
of fixed point that the operator F has at least one fixed point ξ∗ = (M∗(t), E∗(t), L∗(t), P∗(t), A∗(t)) in Ω,
which is a positive ω− periodic solution of system (1). The proof is complete.
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