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A B S T R A C T   

Obesity is a metabolic disease associated with high morbidity and mortality worldwide. Previously we showed 
that Gum Arabic (GA) inhibited obesity in fed with diet-induced obesity. However, the mechanism underlying 
the mode of action is not fully elucidated. Here we aimed to identify the effects of GA on CCAAT-enhancer- 
binding protein- α (C/EBP- α) in mouse-fed diet-induced obesity. Thirty female CD-1 mice 90 days old were 
randomly divided into three groups (n=10). Mice were fed either a regular diet (control), a high-fat diet (HFD), 
or a high-fat diet containing 10% w/w GA (HFD+GA) for 15 weeks. Body weights, visceral adipose tissue (VAT), 
plasma lipid, blood glucose, plasma insulin, adiponectin, and leptin levels were measured. In addition, 11 
β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and C/EBP- α gene mRNA expressions were measured, and 
11β-HSD1 as well. Supplementation of GA significantly (P < 0.05) decreased body weight gain and VAT asso-
ciated with decreases in blood glucose, total cholesterol LDL, and increased HDL concentrations. Likewise, 
administration of GA significantly (P < 0.05) decreased plasma Corticosterone (CORT) and leptin concentrations, 
whereas increased adiponectin compared to the control and HFD groups. In addition, GA administration 
significantly (P < 0.05) reduced the abundance of both hepatic 11β-HSD1 and C/EBP- α gene mRNA expression 
compared to the control and HFD groups. Supplementation of GA significantly (P < 0.05) down-regulated he-
patic 11β-HSD1 protein expression compared to control and HFD groups. These findings indicate that GA con-
sumption may be useful to prevent obesity through suppression of C/EBP- α gene expression.   

1. Introduction 

The occurrence of obesity is growing and resumes to be the main 
public health issue worldwide (James, 2018). Obesity forms the basis of 
the metabolic syndrome associated with dyslipidemia (Vekic, Zeljkovic, 
Stefanovic, Jelic-Ivanovic, & Spasojevic-Kalimanovska, 2019), insulin 
resistance (Noakes, 2018), type 2 diabetes (Leitner et al., 2017), heart 
disease (Carbone et al., 2019), hypertension (Leggio et al., 2017) and 
nonalcoholic fatty liver disease (Polyzos, Kountouras, & Mantzoros, 
2019). Abdominal obesity is the main manifestation of metabolic syn-
drome which considered a fatal outcome of visceral obesity (Paley & 

Johnson, 2018). To understand the consequence of abdominal obesity 
and its role in development of metabolic syndrome is fundamental to 
understand the link between the diseases associated with this condition 
(L. Hu et al., 2017). The visceral fat reduction is vital to decrease the risk 
of metabolic diseases in this context (Myers, Kokkinos, & Nyelin, 2019; 
Nishizawa & Shimomura, 2019; Pi-Sunyer, 2019). Thus, it is essential to 
establish strategies for preventing obesity. 

Glucocorticoids (GCs) are well-known to play a key role in the 
regulation of various biological activities, such as stress responses 
(Aerts, 2018), inflammatory responses (Liberman et al., 2018), immune 
response (Bereshchenko, Bruscoli, & Riccardi, 2018), energy balance 
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(Borba et al., 2017) and development of obesity (Woods et al., 2015). 11 
β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is the key GC 
metabolizing enzyme that regulates intracellular active GC’s bioavail-
ability through converting inactive GC to their active forms in vivo 
(Chapman, Holmes, & Seckl, 2013). The overexpression of 11β-HSD1 is 
fundamental in the development of metabolic syndrome (Li et al., 2017) 
and its related conditions including obesity (Stomby, Andrew, Walker, & 
Olsson, 2014), atherosclerosis (Hadoke, Kipari, Seckl, & Chapman, 
2013), insulin resistance (Peng et al., 2016), type 2 diabetes millets 
(Shukla et al., 2019a) and nonalcoholic fatty liver disease (Candia et al., 
2012). Downregulation of 11β-HSD1 contributes in resistant of meta-
bolic syndrome (Harno et al., 2013). 11β-HSD1 inhibitors are found to 
improve lipid profile (G.-X. Hu et al., 2013), blood glucose (Shukla et al., 
2019b) and improved adipose tissue functions (Rathinasabapathy et al., 
2017). An adipose tissue selected inhibitor is also found to improve 
hepatic metabolism by decreasing phosphoenolpyruvate carboxykinase 
(Winnick et al., 2013) and increasing carnitine palmitoyltransferase I 
(Anagnostis et al., 2013) expression. 

Leptin is an adipose tissue hormone that plays a vital role in body 
weight regulation (Xu & Xie, 2016) when produced and released from 
adipocytes into the bloodstream (D’Souza, Neumann, Glavas, & Kieffer, 
2017). Leptin stimulates energy expenditure and inhibits food intake 
(Hussain & Khan, 2017). The central roles of leptin are regulation of 
body weight manifested by excessive obesity, which occurs both in mice 
and humans (Gruzdeva, Borodkina, Uchasova, Dyleva, & Barbarash, 
2019). On the other hand, Adiponectin is the predominant peptide 
produced by adipocytes which play a fundamental role in obesity 
(Tumminia et al., 2019) and its related conditions such as type 2 dia-
betes (Y. Wang et al., 2018) and cardiovascular disease (Menzaghi & 
Trischitta, 2018). It’s also secreted by other cell types (Barbe et al., 
2019), such as cardiac myocytes (Woodward, Akoumianakis, & Anto-
niades, 2017), skeletal muscle (Krause, Milne, & Hawke, 2019) and 
endothelial cells (Sena, Pereira, Fernandes, Letra, & Seiça, 2017). Adi-
ponectin influences are mediated via Adiponectin receptors (Karnati, 
Panigrahi, Li, Tweedie, & Greig, 2017). Adiponectin is well documented 
to increase insulin sensitivity in the liver and muscle (Ruan & Dong, 
2016). It is ultimately regulates peripheral blood glucose (Yanai & 
Yoshida, 2019) and fatty acid metabolism (Stern, Rutkowski, & Scherer, 
2016). 

Dietary fibre (DF) is used to treat a wide variety spectrum of obesity 
associated conditions (Bozzetto et al., 2018). A diet containing high fat, 
in particular, Trans (TFAs) and saturated fatty acids (SFAs) plays a 
critical role in the development of metabolic syndrome (Sekar et al., 
2017). In contrast, a diet containing polyunsaturated fatty acids offers 
protection against metabolic syndrome development (Khan & Jackson, 
2018). Chronic feeding of saturated fatty acids increased hepatic 
11β-HSD1 mRNA expression in rats (Vara Prasad, Jeya Kumar, Kumar, 
Qadri, & Vajreswari, 2010). Hepatic CCAAT-enhancer binding protein- 
α (C/EBP- α) is the main transcription factor required for 11β-HSD1 
mRNA expression found to increase by supplementation of TFAs and 
SFAs in the rat. The consumption of medicinal plants such as tea is re-
ported to reduce 11β-HSD1 activity (Hintzpeter, Stapelfeld, Loerz, 
Martin, & Maser, 2014). About five compounds isolated from tea 
showed slight inhibitory effects on both human and mouse 11β-HSD1 
activity (G. C. Wang et al., 2016). 

Gum arabic (GA) (Fig. 1), is an edible dried sticky exudate from the 
stems and branches of Acacia seyal and Acacia senegal (Hammad & 
Mohammed, 2018) that is rich in non-viscous soluble fiber with 
240–580 kDa of molecular weight (Mariod, 2018; Slavin, 2013). It is 
composed of six carbohydrate moieties (galactopyranose, arabinopyr-
anose, arabinofuranose, rhamnopyranose, glucuropyranosyl uronic acid 
and 4-O methyl glucuropyranosyl uronic acid) and also contains a small 
proportion of proteins. The main chain is composed of 1,3-linked 
βD-galactopyranosyl units. These 1,3-linked β-D-galactopyranosyl 
units are composed of side chains linked to the main chain by 1,6-link-
ages. Both the main and side chains contain units of the carbohydrates 

moieties presented before. The uronic acid moieties, mostly end-units, 
have been used widely in the food industry and pharmaceutical field 
medicine (B. H. Ali, Ziada, & Blunden, 2009). For decades, it has been 
used as an oral hygiene substance by several communities in North Af-
rica and the Middle East (Al-Majed, Mostafa, Al-Rikabi, & Al-Shabanah, 
2002; Badreldin H. Ali et al., 2013; Baien et al., 2020). The treatment of 
GA has been revealed to ameliorate some biochemical (Nemmar, 
Al-Salam, Beegam, Yuvaraju, & Ali, 2019), such as decreased total 
cholesterol (Mohamed, Gadour, & Adam, 2015), low-density lipoprotein 
(LDL), triglycerides (TG) (Kaddam, Fadl-Elmula, Eisawi, Abdelrazig, & 
Saeed, 2019), and blood glucose (Larson et al., 2021). Moreover, the 
administration of GA increased the quality of high-density lipoprotein 
(HDL) both in humans (Babiker, Elmusharaf, Keogh, & Saeed, 2018) and 
animal (Ahmed, Fedail, Musa, Musa, & Sifaldin, 2016). In addition, the 
treatment of GA has been reported to serve as a dietary fibre that and 
decrease body mass index (BMI) (Babiker et al., 2012), improves 
reduction of body fat deposition (Ushida, 2012), and serves as 
anti-obesity effects when supplemented with diet (Ahmed, Musa, Fedail, 
Sifaldin, & Musa, 2016). Previous studies have revealed that GA lowered 
caloric density and glucose absorption (Larson et al., 2021; Nasir et al., 
2010). In our earlier report, we administrated the normal mice with 10% 
of GA in the form of drinking water. It decreased visceral adipose tissue, 
which was associated with the downregulation of hepatic 11β-HSD1 
mRNA expression (Ahmed, Musa, Fedail, Sifaldin, & Musa, 2015). 
However, the mechanism of action through which GA decreased hepatic 
11β-HSD1 mRNA expression remains unclear. In the present study, we 
used mice to test our hypotheses that GA may decrease 11β-HSD1 
through hepatic C/EBP- α and the changes in C/EBP- α may be associ-
ated with plasma CORT concentrations. 

2. Materials and methods 

2.1. Experimental design and animal treatment 

Thirty female CD-1 mice of 90 days old were purchased from the 
Sudanese National Research Center, Khartoum, Sudan and housed at the 
Department of Toxicology, Faculty of Veterinary Medicine, and the 
University of Khartoum in plastic cages (each containing 5 mice) in 
room kept at 25◦C with a 12-h light and dark cycle. The mice were 
provided ad libitum access of a commercial diet and drinking water for at 
least 7 days of adaptation and throughout the experiment. After the 
adaptation period, mice were allocated into three groups. The control 
group (Control, n = 10) was fed a standard mouse diet, the high-fat diet 
group (HFD, n =10) was fed high-fat diet, and the high-fat diet group 
was supplemented with 10% of Gum Arabic (GA) groups (HFD+GA, 
n = 10). GA was purchased from Khartoum Local Market, Sudan. The 
food was obtained from Jiangsu Province Cooperative Medical and 
Biological Engineering Co. Ltd (Shown in Table 1). The body weights 
were recorded during the experimental period. After 15 weeks, the 
blood samples were collected from the mice’s orbital fossa in EDTA 
containing tubes. The plasma samples were separated via centrifugation 
for 15 min at 4 ◦C and stored at -80 ◦C until biochemical measurements. 
The mice were killed using a rapid decapitation protocol. Visceral adi-
pose tissue (VAT) and liver samples were then dissected and weighed 
after being washed in cold phosphate buffer saline (pH 7.4). The liver 
and VAT tissue was stored at − 80 ◦C until further investigations. The 
experimental procedures were done based on the Animal Ethics of the 
University of Khartoum. 

2.2. Blood lipid profile and glucose 

Blood glucose, plasma total cholesterol, triglycerides (TG), low 
density lipoprotein (LDL), very low-density lipoprotein (VLDL), and 
high-density lipoprotein (HDL) were measured using commercially 
assay kits (Nanjing Jiancheng Bioengineering Company, Nanjing, 
China), according to the manufacturers’ instructions. 
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Fig. 1. Chemical structure of Gum Arabic (A), the effect of GA treatments on visceral adipose tissue (B and C) and body weight (D). The values are the means ± SEM, 
n=10/group. 
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2.3. Plasma CORT and insulin measurements 

Plasma CORT concentration was determined using an enzyme 
immunoassay. CORT in 5 μl plasma and 195 μl water was extracted with 
4 ml dichloromethane, re-dissolved in phosphate buffer, and triplicate in 
the enzyme immunoassay. The dilution of the CORT antibody (Chem-
icon, Temecula, CA, USA; cross-reactivity: 11-dehydrocorticosterone 
0.35%, progesterone 0.004%, 18-OH-DOC 0.01%, cortisol 0.12%, 18- 
OHB 0.02% and aldosterone 0.06%) was 1:8000. Horseradish peroxi-
dase (1:400,000) linked to CORT served as the enzyme label and ABTS 
[2,2_-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)] as the sub-
strate. The concentration of CORT in plasma samples was calculated by 
using a standard curve run in duplicate on each plate. Plasma pools from 
mice with two different CORT concentrations were included as internal 
controls on each plate. If the concentration was below the detection 
threshold, the determination was repeated with 10 μl plasma. If the 
concentration was still below the detection threshold, the value of the 
lowest detectable concentration (1ngml-1) was assigned. Intraassay 
variation ranged from 4.5 to 10.8% and inter-assay variation from 9.6 to 
17.6%, depending on the concentration of the internal control and the 
year of determination. 

Plasma insulin levels were detected using an insulin radioimmuno-
assay (RIA) commercial kit. The samples were analyzed in a double 
assay format, and the intra-assay coefficient of variation was 1.4%. 

2.4. Plasma Adiponectin and leptin concentrations 

The leptin and adiponectin levels were measured using commercially 
available enzyme-linked immunosorbent assay (ELISA) commercial kits. 
Specifically, for adiponectin concentrations, the Alpco ELISA kit was 
used (Promega Corporation), and for leptin levels measurements, the 
R&D Systems ELISA kit was used. Insulin was quantified using the 
Mouse Insulin ELISA by ALPCO Diagnostics. The intraassay and inter-
assay coefficients of variation were 5.3 and 7.2, respectively, for insulin 
and 4.3 and 7.8 for leptin. 

2.5. Hepatic 11β-HSD1 and C/EBP-α genes mRNA 

2.5.1. Total RNA extraction 
About 100 mg of liver were ground in liquid N2. According to the 

manufacturer’s instruction, a portion of about 50 to 100 mg was used to 
extract RNA using TRIzol total RNA kit (Invitrogen, Biotechnology Co, 
Ltd, Carlsbad CA, USA). Total RNA concentration was then quantified by 
measuring the absorbance at 260 nm in a photometer (Eppendorf Bio-
photometer, Germany). Ratios of absorptions (260/280 nm) were be-
tween 1.8 and 2.0 for all preparations. Aliquots of each RNA sample 
were subjected to electrophoresis through a 1.4% agarose-formaldehyde 

gel to verify their integrity. Total RNAs samples were treated with 10 U 
DNase I (Rnase Free, D2215, Takara, Japan) for 30 min at 37◦C, and 
purified according to the manufacturer’s protocol. 

2.5.2. Reverse transcription 

Two μg of total RNA was reverse transcribed by incubation at 37◦C 
for 1 h in a 25 μL mixture consisting of 1 × RT-buffer (Promega, USA), 
100 U Moloney Murine Leukemia Virus reverse transcriptase (M-MLV) 
(Promega, USA), 8 U RNase inhibitor (Promega, USA), 5.3 μmol/L 
random hexamer primers (TaKaRa Biotechnology, China) and 0.8 
mmol/L dNTP (TaKaRa Biotechnology, China). The reaction was 
terminated by heating at 95◦C for 5 min and quickly cooling on ice. RT 
was performed in a Bio-Rad DNA Engine Peltier Thermal Cycler 
PTC0200 (Bio-Rad, USA). 

2.5.3. Real-Time PCR 

The primers for the reference gene were designed to span an intron, 
so any genomic DNA contamination can be reported easily with an extra 
product in the melting curves for real-time PCR. For hepatic 11β-HSD1 
and C/EBP-α mRNA expression, real-time PCR was performed in 
Mx3000P (Stratagene, USA) according to the previous publication 
(Ahmed et al., 2015). Mock RT and No Template Controls were included 
to monitor the possible contamination of genomic and environmental 
DNA at both RT and PCR steps. The pooled sample made by mixing equal 
quantity of RT products (cDNA) from all samples was used for opti-
mizing the PCR condition and tailoring the standard curves for each 
target gene. Melting curves were performed to insure a single specific 
PCR product for each gene. Two μL of 16-fold dilution of RT product was 
used for PCR in a final volume of 25 μL containing 12.5 μL SYBR Green 
Realtime PCR Master Mix (TOYOBO Ltd., Japan) and 0.2-0.8 μM of each 
forward and reverse primers for 11β-HSD1 and C/EBP-α (Table 3) were 
synthesized by Geneary (Shanghai, China). The PCR products were 
sequenced to validate the identity of the amplicons. Primers specific for 
A mouse GAPDH were used as a reference gene for normalization pur-
poses. The method of 2− ΔΔCt was used to analyze the real-time PCR data 
(Livak & Schmittgen, 2001). The mRNA abundances were presented as 
the fold change relative to the average level of the control group. 

2.5.4. Hepatic 11β-HSD1 protein expression 

About 50 mg of the liver samples were ground using liquid nitrogen 
and were homogenized in 300 μL of ice-cold Radioimmunoprecipitation 
assay (RIPA) buffer 1x in phosphate saline buffer (PBS) (pH 7.5), 1% 
Nonidet P-40, 0.5% sodium deoxycholate, 0.1% Sodium Dodecyl sul-
phate (SDS), 3% aprotinin (was added before lysing), and 1% Phenyl-
methylsulfonyl fluoride (PMSF) / isopropanol (10 mg/mL, added before 
lysing)] using a tissue grinder (Polytron, Polytron PT1200E; Brinkman 
Instruments, Littau, Switzerland). After 30 min of incubation on the ice, 
the homogenate was centrifuged at 10,000xg for 20 min at 4◦C to 
remove all insoluble material. 70% of the supernatant yield was 
collected, and the protein concentration was measured by the BCA assay 
(Pierce, Rockford, IL, USA) according to the manufacturer’s direction. 

15 μg of protein extract from each sample was mixed with loading 
buffer and denatured by boiling for 5 min before loading on a 12% SDS- 
PAGE gel. After electrophoretic transfer, the nitrocellulose membranes 
(BioTrace, Pall, USA) were cut to isolate the 11β-HSD1 band (32 kDa) 
and β-actin band (43 kDa) band according to the prestained SDSPAGE 
standards. After five times washing with TBST (Tris Buffered Saline with 
Tween) (0.1% Tween-20 in Tris-buffered saline), the blotted membranes 
were blocked with 5% skim milk in TBST for 2 h at 25◦C. Followed by 
five times washing with TBST, the blots were then incubated with rabbit 
polyclonal antibody against 11β-HSD1 (Cayman Chemical Company, 
USA, diluted 1:200) and against β-actin (Cayman Chemical Company, 
USA, and diluted 1:10.000) at 4◦C 18 hours. Then blots were washed five 

Table 1 
Composition of experimental diets  

Nutrient High-fat High-fat with Gum 

Casein 25.8 25.8 
L-Cystine 0.4 0.4 
Cornstarch   
Maltodextrin 16.2 10.2 
Sucrose 8.9 6.4 
Cellulose 6.5 5.5 
Soybean oil 3.2 3.2 
Lard 31.17 31.17 
Mineral mix1 1.3 1.3 
Dicalcium phosphate 1.7 1.7 
Calcium carbonate 0.7 0.7 
Potassium citrate 1H20 2.1 2.1 
Vitamin mix1 1.3 1.3 
Choline bitartrate 0.3 0.3 
Gum arabic  10 
Total 100.0 100.5  
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times with TBST and incubated with HRP-conjugated secondary anti-
body (Abcam, UK; 1:4000) for 2h at 25◦C. Finally, the blots were washed 
and detected by enhanced chemiluminescence (ECL) using the LumiGlo 
substrate (Super Signal West Pico Trial Kit, Pierce, USA). The band 
density of 11β-HSD1 was normalized by β-actin. ECL signals recorded on 
x-ray film were scanned and analyzed with Kodak 1D Electrophoresis 
Documentation and Analysis System 120 (Kodak Photo Film Co. Ltd., 
USA). 

2.6. Statistical analysis 

Descriptive statistics model was used for homogeneity and normality 
of variances check. Body weight, VAT, blood lipids profile, blood 
glucose, plasma CORT, plasma leptin, Adiponectin, and insulin, in 
addition to mRNA and protein expression were analyzed by one-way 
ANOVA using SPSS 21.0 for Windows 10, then followed by a least- 
significant difference (LSD) test for groups comparisons. A P-value 
≤0.05 was considered significant. 

3. Results 

3.1. Body weight and organs weight 

The treatment of HFD significantly (P<0.01) increased VAT 
compared to control group, while treatment of GA significantly 
decreased the values of VAT in HFD+GA treated mice group (Fig. 1A and 
1B). Similarly, the treatment of HFD significantly increased the mice 
body weight compared to the control group, while the administration of 
GA significantly (P<0.01) reduced mice body weight gain of HFD mice 
(Fig. 1C). 

3.2. Plasma insulin and blood glucose 

The treatment of HFD increased blood glucose levels when compared 
to the control. But the treatment of GA significantly (P<0.05) reduced 
concentrations of blood glucose compared to the control, and HFD 
treated mice groups (Fig. 2 A). Unlikely, supplementation of HFD 
increased plasma insulin concentrations compared to the control group, 
whereas the supplementation of GA significantly decreased insulin 
concentrations (Fig. 2 B). 

3.3. Plasma corticosterone, adiponectin, and leptin concentrations 

The treatment of HFD significantly increased plasma CORT concen-
trations compared to the control group. However, the supplementation 
of GA significantly (P<0.05) decreased plasma CORT levels compared to 
the control, and HFD treated mice groups (Fig. 2 C). Conversely, the 
treatment of HFD significantly (P<0.05) decreased plasma Adiponectin 
concentrations when compared to the control group, and HFD treated 
mice groups (Fig. 2D). However, the supplementation of GA signifi-
cantly (P<0.05) decreased leptin concentrations compared to the con-
trol, and HFD treated mice groups (Fig. 2 E). 

3.4. Plasma lipid profile 

The intake of HFD significantly (P<0.05) increased plasma total 
cholesterol and LDL concentrations compared to control. Yet, GA 
administration significantly (P<0.05) decreased plasma total choles-
terol and LDL concentrations. In contrast, the supplementation of GA 
significantly (P<0.05) increased HDL cholesterol concentration 
compared to the control, and HFD treated mice groups (Table 2). 

3.5. Hepatic 11β-HSD1 and C/EBP-α genes mRNA and protein 
expression 

Interestingly, the treatment of GA significantly down-regulated the 

Fig. 2. Effect of GA treatments on blood glucose (A), plasma Insulin (B), plasma 
CORT (C), plasma Adiponectin (D), and plasma leptin (E). The values are the 
means ± SEM, n=10/group. Bars with different letters are significantly 
different at p<0.05. 
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11β-HSD1 protein expression in the liver of mice fed with HFD 
compared to the control and HFD treated mice groups (Fig. 3C). The 
intake of HFD increased hepatic 11β-HSD1 mRNA expression compared 
to the control group. However, the supplementation of GA significantly 
decreased hepatic 11β-HSD1 mRNA expression compared to the HFD 
treated mice group (Fig. 3 A). Likewise, treatment of GA significantly 
decreased hepatic C/EBP-α mRNA expression compared to the HFD 
treated mice group (Fig. 3 B). 

4. Discussion 

Obesity is a global public health problem associated with high 
morbidity and mortality (Abdelaal, le Roux, & Docherty, 2017). Ther-
apeutic approaches such as surgical operations (Jumbe, Hamlet, & 
Meyrick, 2017), uses of synthetic drugs (Wolfe, Kvach, & Eckel, 2016); 
ultimately cause adverse complications, health consequences with high 
economic costs (Tremmel, Gerdtham, Nilsson, & Saha, 2017). Several 
experimental studies confirmed the association between dietary fibre 
intake reduction in abdominal obesity (Pilolla, 2018), food intake 
(Fayet-Moore, Cassettari, Tuck, McConnell, & Petocz, 2018), body 
weight (Solah et al., 2017), cholesterol (Soliman, 2019) and blood 
glucose (McRae, 2018). Consistently, supplementation of Gum Arabic 
(GA) decreased body weight which was associated with reduction of 
abdominal visceral adipose tissue (VAT). The body weight reduction via 
GA may be based on the fact that dietary fibre consumption has potential 
health beneficial including satiety promotion (Dreher, 2018), cleric 
intake reduction (Adam, Thomson, Williams, & Ross, 2015), stomach 
hormone secretions (Hervik & Svihus, 2019), thus, could reduces 
weight. In addition, dietary fibre intake reported changing body 
composition (Solah et al., 2017). 

Leptin, the hormone, a hunger biomarker produced by adipose tis-
sue, communicates information about the organism’s energy balance 
(Barateiro, Mahú, & Domingos, 2017; Rosenbaum & Leibel, 2014). 
Leptin circulating plasma levels are influenced by the nutritional status 
of the organism (Alwarawrah, Kiernan, & MacIver, 2018). Deregulations 
in leptin signaling pathway and biosynthesis have been associated with 

obesity (Sánchez-Jiménez, Pérez-Pérez, de la Cruz-Merino, & 
Sánchez-Margalet, 2019). In the present study, the administration of GA 
decreased plasma leptin concentrations. These results are consistent 
with previous findings that revealed the consumption of cereal fibre 
reduced plasm leptin concentrations in mice fed with a high fat diet 
(Zhang et al., 2016). Several studies reported the effect of dietary fibre 
consumption on modulating of leptin secretion and its ameliorating ef-
fects on leptin resistance in mice (Acharya, Gao, Bless, Chen, & Tetel, 
2019; H. Wang, Hong, Li, Zang, & Wu, 2018; Zhang et al., 2016). The 
majority of those reports based on circulating leptin levels suggest that 
fibre consumption ultimately has beneficial health effects by improving 
leptin resistance and sensitivity (Hong et al., 2016; Izadi, Saraf-Bank, & 
Azadbakht, 2014; Maziarz et al., 2017). However, the mechanism of 
action through which GA decreases leptin remains unclear. On the other 
hand, the administration of GA increased plasma Adiponectin concen-
trations associated with low blood leptin concentrations. The present 
findings agree with earlier studies that revealed the consumption of 
cereals dietary fibre increased serum adiponectin levels in mice fed a 
high-fat diet (Han et al., 2017). In addition, the consumption of 
fermentable fibre significantly increased plasma adiponectin concen-
trations in mice fed with high fat and sucrose diet (Jangra, K, Sharma, 
Pothuraju, & Mohanty, 2019). Yet, the mechanism underlying the in-
creases of plasma adiponectin via dietary fibre, including GA requires 
further investigation, which will be our future exciting research 
direction. 

Recent studies reported that the consumption of dietary fibre, 
including GA reduced plasma cholesterol (Soliman, 2019), triglyceride 
(Hannon et al., 2018) and, bad cholesterol, low-density lipoprotein 
(LDL) levels both in human and mice (Narayan et al., 2014; Yanai & 
Tada, 2018). In agreement with earlier publications, the treatment of GA 
decreases total cholesterol LDL, whereas it increases good cholesterol 
and HDL concentrations. The reduction in plasma lipid profile was 
associated with a reduction in blood glucose concentrations. Numerous 
modes of action have been pointed out to disclose the hypercholester-
olemic effects of dietary fibre (McRae, 2017; Rideout, Harding, Jones, & 
Fan, 2008; Viuda-Martos et al., 2010). One potential elucidation is that 
dietary fibre increases the viscosity of the intestinal nutritional contents 
(Grundy et al., 2016; Jha, Fouhse, Tiwari, Li, & Willing, 2019); conse-
quently it is interfering with nutrient absorption (Adams, Sello, Qin, 
Che, & Han, 2018) and micelle formation (Jesch & Carr, 2017), which in 
turn, decreases intestinal lipids absorption. Others mechanisms sug-
gested is that the soluble dietary fibers serves through disrupting the bile 
acids formation (Naumann, Schweiggert-Weisz, Eglmeier, Haller, & 
Eisner, 2019) the entero-hepatic circulation, enhancing bile acid 
excretion (Dubey, Toh, & Yeh, 2018; Parnell & Reimer, 2010) and 
consequently decreases the plasma cholesterol concentrations (Babio, 
Balanza, Basulto, Bullo, & Salas-Salvado, 2010; Narayan et al., 2014). 
Furthermore, the viscosity prosperity of fermentable dietary fibres is 
reported to have significant effects on lowering cholesterol in the rat 
(Brockman, Chen, & Gallaher, 2014). 

11 β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) an intracel-
lular gate-keepers of tissue GCs action catalyses generation of active 
glucocorticoids (GCs), which plays a vital role is initiation of abdominal 
fat deposition (Galitzky & Bouloumié, 2013). CCAAT-enhancer binding 
protein- α (C/EBP- α) (Sai et al., 2008), the main transcription factor 
required for the expression of 11β-HSD1 mRNA expression plays a 
critical role in the induction of obesity via influences on 11β-HSD1 
mRNA transcription (Ren et al., 2014). Here we presented the first 
finding revealing that the administration of GA downregulated hepatic 
C/EBP- α mRNA expression is associated with downregulation of hepatic 
11β-HSD1 mRNA expression in mice. Moreover, downregulation of he-
patic 11β-HSD1 mRNA expression was consistent with hepatic 
11β-HSD1 protein expression. Interestingly, the downregulation of 
11β-HSD1 and its transcriptional enhancer C/EBP- α were associated 
with a reduction of plasma corticosterone (CORT) concentrations. 

Table 2 
Effect of GA treatments on blood lipid profile concentrations. Data were 
expressed as means ± S.E.M. of 10 /group. Different letters in the rows indicate 
significantly different mean values at p<0.05.  

Group Triglyceride 
(mg/dL) 

Total 
cholesterol 
(mg/dL) 

HDL 
(mg/ 
dL) 

LDL 
(mg/dL) 

VLDL 
(mg/dL) 

Control 40.7±3.15a 68.9±4.6 a 49.7 
±4.9 a 

48.45 
±5.60a 

8. 63 
±6.5a 

HDF 39.1±3.7a 97.2±4.8 b 34.1 
±2.2 b 

71.45 
±5.60b 

13. 81 
±4.7a 

HFD+GA 38.7±5.4a 71.2±5.5 a 54.9 
±9.3 a 

39.71 
±5.12a 

10.41 
±0.15a  

Table 3 
Primers sequences used for Real-time PCR  

Target 
genes 

Gene bank 
number 

Product 
Size 

Primer sequences 

GAPDH NM_008084.2 141 F: 5′- 
ACATGGTCTACATGTTCCAGTA-3′

R: 5′-GGAGTCTACTGGTGTCTTCA- 
3′

11β- 
HSD1 

NM_008288.2 302 F: 5′-AGCAACCAGAGATAGGCAGC- 
3′

R: 5′-ACACCTCGCTTTTGCGTAGA- 
3′

C/EBP-α NM_00 
1287521.1 

178 F: 5′-AGACATCAGCGCCTACATCG- 
3′

R: 5′-CCGGTACTCGTTGCTGTTCT- 
3′
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5. Conclusion 

In conclusion, the administration of GA reduced body weight and 
abdominal VAT deposition in female mice associated with the reduction 
of plasma CORT and downregulation of C/EBP- α and 11β-HSD1 mRNA 
and protein expression. Thus, GA may have a future perspective of their 
review to suppress obesity by suppressing C/EBP- α gene mRNA 

expression. 
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Fig. 3. Effect of GA treatments on hepatic 11βHSD1 (A) and C/EBP-α (B) mRNA expression and hepatic C/EBP-α protein expression (C). The values are the means ±
SEM, n=10/group. Bars with different letters are significantly different at P<0.05. 
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