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Urban land-use classification using machine learning classifiers: comparative 
evaluation and post-classification multi-feature fusion approach
Yashon O. Ouma a, Amantle Keitsilea, Boipuso Nkwaea, Phillimon Odirilea, Ditiro Moalafhib and Jiaguo Qi c

aDepartment of Civil Engineering, University of Botswana, Gaborone, Botswana; bFaculty of Natural Resources, BUAN, Gaborone, 
Botswana; cCenter for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan, USA

ABSTRACT
Accurate spatial-temporal mapping of urban land-use and land-cover (LULC) provides critical 
information for planning and management of urban environments. While several studies have 
investigated the significance of machine learning classifiers for urban land-use mapping, the 
determination of the optimal classifiers for the extraction of specific urban LULC classes in time 
and space is still a challenge especially for multitemporal and multisensor data sets. This study 
presents the results of urban LULC classification using decision tree-based classifiers compris-
ing of gradient tree boosting (GTB), random forest (RF), in comparison with support vector 
machine (SVM) and multilayer perceptron neural networks (MLP-ANN). Using Landsat data 
from 1984 to 2020 at 5-year intervals for the Greater Gaborone Planning Area (GGPA) in 
Botswana, RF was the best classifier with overall average accuracy of 92.8%, MLP-ANN 
(91.2%), SVM (90.9%) and GTB (87.8%). To improve on the urban LULC mapping, the study 
presents a post-classification multiclass fusion of the best classifier results based on the 
principle of feature in-feature out (FEI-FEO) under mutual exclusivity boundary conditions. 
Through classifier ensemble, the FEI-FEO approach improved the overall LULC classification 
accuracy by more than 2% demonstrating the advantage of post-classification fusion in urban 
land-use mapping.
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Introduction

Within the urban ecosystems, the determination and 
analysis of land-use and land-cover (LULC) and LULC 
change analysis plays an important role in providing 
the critical input in the decision-making process for 
environmental planning and ecological management 
(Dwivedi et al., 2005; Fan et al., 2007). For urban 
LULC mapping and change detection, remote sensing 
data provides the optimal spatial and temporal data 
sources. However, the extraction of urban features is 
often a challenging task due to the high degree of 
interactions and complexities within the features in 
terms of their spectral, spatial and textural properties 
(Blaschke et al., 2014). Due to these factors, the appli-
cations of traditional pixel-based classifiers in urban 
LULC mapping often lead to unsatisfactory results 
(Johnson & Xie, 2013; Myint et al., 2011).

To overcome the drawbacks in pixel-based classifi-
cations, Blaschke et al., 2014 proposed the geographic 
object-based image analysis (GEOBIA) focusing on 
the segmentation of very high-spatial resolution 
(VHR) image data. Using GEOBIA segmentation, pix-
els are grouped into similar and semantically indepen-
dent image segments or objects for feature extraction 
and classification. For VHR image data, GEOBIA has 
been reported to perform better than pixel-based 

approaches in urban LULC mapping (Blaschke et al.,  
2014; Drăgut et al., 2010; Johnson & Xie, 2013; Jozdani 
et al., 2018). GEOBIA segmentation approach does 
not however yield good results for medium- and low- 
resolution remote sensing data.

At medium spatial resolutions, therefore, methods 
comprising of unsupervised algorithms, parametric 
supervised and machine learning methods have been 
widely used for LULC mapping (Friedl & Brodley,  
1997; Halder et al., 2011; Li et al., 2016; Orieschnig 
et al., 2021; Waske & Braun, 2009; Wu et al., 2019). 
The supervised classifiers comprise of maximum like-
lihood classifier, Mahalanobis distance, k-nearest 
neighbors (kNN), support vector machine (SVM), 
random forest (RF), decision trees (DT), spectral 
angle mapper (SAM), fuzzy logic, fuzzy adaptive reso-
nance theory-supervised predictive mapping (Fuzzy- 
ARTMAP), radial basis function (RBF), artificial 
neural networks (ANN) and naive Bayes (NB) (Ma 
et al., 2019; Shih et al., 2019). The unsupervised classi-
fiers include, among others, fuzzy c-means, k-means 
algorithm, affinity propagation clustering algorithm 
and ISODATA techniques (Maxwell et al., 2018).

Urban LULC mapping is data intensive requiring 
both current and historical remote sensing data. To 
improve on the urban LULC mapping, machine learn-
ing (ML) and artificial intelligence classifiers have 
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been preferred (Mao et al., 2020; Lefulebe et al. (2022). 
In general, the application of ML algorithms for LULC 
mapping has attracted considerable research interests 
(Maxwell et al., 2018; Wang et al., 2022). This is 
mainly because ML algorithms do not require hypoth-
eses on the input data distribution and tend to yield 
better results than the traditional parametric classifiers 
(Jozdani et al., 2018; L. Yu et al., 2014; Nery et al.,  
2016). Different ML algorithms have been used for 
urban LULC mapping and modeling (e.g. C. Zhang 
et al., 2019; Mao et al., 2020; Talukdar et al., 2020; 
Teluguntla et al., 2018), and have also been compared 
(Camargo et al., 2019; Li et al., 2016; Rogan et al.,  
2008). However, each ML algorithm will yield differ-
ent accuracy levels for specific case studies and data. 
Further, in addition to the quality and quantity of the 
imagery, the choice of the suitable ML classifier is still 
a challenge as the hyperparameters of the classifiers 
influence the quality of the feature extractions (Lu & 
Weng, 2004; Nichols et al., 2019; Thanh Noi & 
Kappas, 2017).

To determine the suitable and most accurate ML 
approaches for urban LULC modeling, several studies 
have compared different classifiers based on their 
overall accuracy, and not in terms of their mathema-
tical and functional approach (e.g. Camargo et al.,  
2019; Jamali, 2019; Li et al., 2016; Rogan et al., 2008). 
Comparing RF, SVM, naïve Bayes, and kNN machine 
learning classifiers for mapping urban areas in the city 
of Cape Town, Lefulebe et al. (2022) found all the 
classifiers to have accuracy of greater than 91%, with 
kNN being the best classifier at 96.54% accuracy with 
kappa of 0.95. Kranjčić et al. (2019) classified green 
infrastructure in Varaždin and Osijek cities in Croatia 
from Sentinel-2 satellite image using SVM, RF, ANN, 
and naïve classifier and found SVM to yield the high-
est accuracy of 87% with kappa coefficients of 0.89. Shi 
et al. (2019) used multisource satellite images for 
urban LULC mapping in Guangzhou by integrating 
an ensemble of object-based classifiers, decision trees 
and RF and achieved an accuracy of >85%. Ha et al. 
(2020) also used RF to map rural urbanization in 
Vietnam obtaining an accuracy of more than 90% 
using Landsat data. For detailed mapping of urban 
land use with multi-source data in the city of 
Lanzhou, Zong et al. (2020) used RF and attained 
overall accuracy of 83.75%. From previous research, 
RF, SVM and ANN have been reported to provide 
higher overall accuracy in urban LULC modeling as 
compared to the traditional classification techniques 
(Carranza-García et al., 2019; Gong et al., 2020; Ma 
et al., 2019).

In addition to their inherent mathematical func-
tionalities, the performances of the classifiers are also 
influenced by the data and characteristics of the land- 
use features within the urban landscape. For example, 
simple decision trees-based classifiers like 

Classification and Regression Trees (CART) are not 
only sensitive to changes in the training data sets but 
also tend to overfit the model (Prasad et al., 2006). On 
the other hand, for kNN classifiers, the setting of the 
ideal value of k is difficult (Naidoo et al., 2012), and 
the classifier is computationally complex as its effec-
tiveness is dependent on the a priori determination of 
the number of neighbours (Qian et al., 2015). Naïve 
Bayes classifiers perform satisfactorily with small data 
sets; however, the output accuracy is compromised if 
inputs are not independent. SVM, on the other hand, 
is effective in high dimensional spaces and performs 
adequately in situations where a clear margin of 
separation exists between classes and is computation-
ally efficient. Nevertheless, SVM requires a long train-
ing time for large data sets and is not intuitive, easy to 
understand or fine-tune (Huang et al., 2002). Though 
widely used due to their non-parametric modeling 
capability, ANN classifiers are highly complex, time- 
consuming and computationally expensive, require 
large training data to produce accurate outcomes and 
exhibit a high tolerance for noisy data (Y. Ouma et al.,  
2022).

Further, while several studies have been conducted 
on urban LULC mapping using ML algorithms, the 
performance of the models cannot be replicated from 
one case study to another, and most studies do not 
focus on classifier-class performance; rather, the 
emphasis is on the overall LULC classification accu-
racy. Secondly, most of the studies are based on single- 
date imagery and not on the multitemporal imagery 
with multisensor characteristics. Previous studies have 
also pointed out that the performance of the ML 
classifiers in urban LULC classifications are affected 
by the limitations in the spectral and spatial resolu-
tions of the sensors especially at lower resolutions 
(Yang et al., 2017). Compared to the traditional clas-
sifiers, the non-parametric ML algorithms are consid-
ered superior as they do not relay on a priori 
hypotheses of the input data distribution (Nery et al.,  
2016). However, results from different case studies 
have demonstrated that the performance of a given 
ML classifier is not only specific to the case study, but 
also influenced by the setup of the machine learning 
algorithm itself and the quality of the training data. 
With focus on computationally efficient open-source 
solutions, this study evaluates the performance of 
Gradient Tree Boosting (GTB), RF, in comparison 
with SVM and Multilayer Perceptron Neural 
Networks (MLP-ANN) as implemented within the 
Google Earth Engine (GEE) platform for urban 
LULC mapping.

RF derives the optimal classification solutions by 
overcoming the limitations of single decision tree 
classifiers through robust ensemble learning (EL), 
majority voting and being able to handle higher num-
ber of model variables (Belgiu & Drăguţ, 2016). GTB is 
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also an ensemble classifier, which, unlike RF, ensem-
bles weak base learners with the aim of minimizing the 
loss function through adding newer weak learners to 
the ensemble (Friedman, 2002). GTB has the advan-
tage of high-order feature information optimization, 
generalization and representation without scaling. 
Compared to other EL algorithms, for every GTB 
iteration, the negative gradient loss values are used to 
fit the residuals of the regression tree (Y. Ouma et al.,  
2022). SVM determines the best boundary between 
different training classes by features transfer to higher 
dimensions and performs well on high-dimensional 
data using dynamic kernel functions and are adaptable 
for different classification tasks (Pedregosa et al.,  
2011). Given the dense and complex nature of the 
input training data for urban LULC classification, 
MLP is considered to overcome potential classification 
overfitting scenarios (Mohtadifar et al., 2022). With 
focus on computationally efficient open-source solu-
tions, this study evaluates the performs of the EL (GTB 
and RF) and non-EL (SVM and MLP) algorithms in 
mapping of urban LULC classes as implemented 
within the GEE platform for urban LULC mapping. 
Based on their performances for urban LULC feature 
mapping, the results of EL and non-EL algorithms will 
be evaluated for a proposed feature feature-in feature 
out (FEI-FEO) post-classification fusion approach.

For the test study area of the Greater Gaborone 
Planning Area (GGPA) in Botswana, the objectives 
and contributions of this study are (1) to implement 
ensemble decision tree-based (GTB and RF classifiers) 
and SVM and MLP-ANN machine-learning classifiers 
for urban LULC mapping and change detection from 
Landsat data from 1984 to 2020 in 5-year intervals; (2) 
compare the performance of the classifiers in the 

extraction of urban LULC classes at different multi-
temporal scales and multisensory data; and (3) evalu-
ate the significance of FEI-FEO post-classification 
fusion strategy in the extraction of urban features as 
optimally detected from the classifiers. This study 
improves on our previous study reported in 
Y. Ouma et al. (2022) by introducing GTB and ANN, 
and on the optimization of classifier hyperparameters 
for more accurate classification.

Materials and methods

Study area

The GGPA is the main urban area in Botswana with 
the highest population concentration (Figure 1). 
GGPA lies between latitude 20° 30′S and 24° 45′S 
and longitude 25° 50′E and 26° 12′ (Figure 1), with 
an average altitude of 1,004 m AMSL. The GGPA land 
area is approximately 961.73 km2, while the city is 
approximately 169 km2. The spatial expansion of the 
city and the larger GGPA is constrained in part by the 
existence of the Gaborone dam, the traditional land 
tenure within the larger GGPA, and the topographic 
and semi-arid climate of the area. As depicted in 
Figure 1, within the commuting radius of the 
Gaborone city, a dormitory of suburbs are rapidly 
evolving which are resulting in the characteristic cen-
tripetal movement of rural –urban migrations.

Data

Multisensor Landsat series data comprising of Landsat-4 
(L4-MSS), Landsat-5 (L5-TM), Landsat-7 (L7-ETM+) 
and Landsat-8 (L8-OLI) acquired from 1984 to 2020 

Figure 1. Location of the test study area: greater gaborone planning area (GGPA) (reprinted with permission from Y. Ouma et al. 
(2022). Copyright 2022 ISPRS archives).
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were downloaded from the USGS Earth explorer. The 
MSS pixel size of 60 m was resampled into 30 m using 
data fusion as implemented in Chen et al. (2017). To 
minimize the seasonality effects, the data sets were 
acquired during the time of year. The multitemporal 
and multisensor Landsat imagery (Table 1) were atmo-
spherically corrected using the ATCOR2 tool and histo-
gram equalization in ERDAS Imagine. The time-series 
bands were mosaiced, composited, resampled to 30 m 
spatial resolution and clipped to the study area.

Training and testing data

The urban LULC classes comprised of built-up (residen-
tial, commercial, industrial and impervious surfaces); 
water (dam water body), vegetation cover (forest, shrubs 
and grass) and bare soil. Depending on the season, the 
grass and shrubs are partially converted to croplands. The 
aggregation of the built-up components was adopted to 

minimize the spectral mixing and spatial heterogeneity of 
the built-up features. It was, however, possible to spec-
trally distinguish between the vegetation types due to 
their expansive areal extents and the resulting spectral 
homogeneity. Figure 2 presents the LULC classes and the 
spectral reflectance trends for the classes in the Landsat’s 
visible, NIR and SWIR bands. For each year, the training 
comprised of 12,500 pixels and 7,500 pixels were used for 
model accuracy testing. The training and testing data 
samples were collected from visual identification and 
interpretations from the Landsat imagery, Google Earth 
historical imagery and the historical LULC maps.

Methods

Decision tree-based machine learning classifiers

This section presents an overview of the functional 
and implementational approaches for GTB, RF, SVM 
and MLP-ANN classifiers. To improve on the 

Table 1. Characteristics of Landsat MSS, TM, ETM+ and Landsat OLI sensors.

Landsat sensors Spectral wavelength (μm) Spectral bands Spatial resolution (m)
Temporal period  

(5-year)

Landsat MSS 0.50–0.60 
0.60–0.70 
0.70–0.80 
0.80–1.11

Green 
Red 
Near IR1 
Near IR2

60 1984

Landsat TM 0.45–0.52 
0.53–0.60 
0.63–0.69 
0.75–0.90 
1.55–1.75 
2.09–2.35

Blue 
Green 
Red 
Near IR1 
SWIR1 
SWIR2

30 1990, 1995, 2000, 2005

Landsat ETM+ 0.45–0.52 
0.52–0.60 
0.63–0.69 
0.77–0.90 
1.55–1.75 
2.09–2.35

Blue 
Green 
Red 
Near IR1 
SWIR1 
SWIR2

30 2010

Landsat OLI 0.45–0.51 
0.53–0.59 
0.64–0.67 
0.85–0.88 
1.57–1.65 
2.11–2.29

Blue 
Green 
Red 
Near IR2 
SWIR1 
SWIR2

30 2015, 2020

Figure 2. False color composite LULC classes and the spectral reflectances in L8-OLI (part of figure reprinted with permission from 
Y. Ouma et al. (2022). Copyright 2022 ISPRS archives).
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performance accuracy of the classifiers, optimal model 
hyperparameters determined following the steps out-
lined in Y. O. Ouma et al. (2023).

Gradient tree boosting (GTB)
GTB aggregates an ensemble of decision trees 
(Figure 3). The classifier, however, confines indi-
vidual trees to a weaker prediction model, hence 
limiting the complexity of the decision trees. The 
algorithm attains its classification accuracy by the 
iterative combination of weak learner ensembles 
into stronger ensemble of trees through stepwise 
minimization of the loss function based on the 
gradient descent optimization (Friedman, 2002). 
Different from the other ensemble classifiers, 
GTB fits residuals of the regression tree at each 
iteration using negative gradient values of loss. 
The inter-tree correlations are reduced by con-
structing new trees based on stochastically selected 
training subset data.

The GB algorithm for training and classification of 
sample feature vector is summarized in the following 
steps:

(I) Determine the training T and testing S sets, i.e. 
T ¼ x1; y1ð Þ; x2; y2ð Þ; :::; xN ; yNð Þ, xi 2 X � Rn, 
yi 2 0; þ 1f g. Let xi denote the feature vector 
of each sample and yi denotes its class label.

(II) Establish the loss function: 

L y; f xð Þð Þ ¼ y � f ðxÞ½ �
2 (1) 

where f(x) is the fitting function of y.

III. Initialization of the model variables:

fo xð Þ ¼ arg min
c

XN

i¼1
L yi; cð Þ (2) 

where c is the constant for the minimization of the loss 
function L y; cð Þ and represents a tree with a single root 
node.

Figure 3. Visualizing gradient tree decision boosting (reprinted with permission from Y. Ouma et al. (2022). Copyright 2022 ISPRS 
archives).
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IV. For each model the following steps are 
executed:

(a) For the i-th sample (I = 1, 2, . . . ., N), calculate 
the negative gradient rmiof the loss function in the 
current model rmi: 

rmi ¼ �
@L y; f xið Þð Þ

@f xið Þ

� �

f xð Þ¼fm� 1 xð Þ
(3) 

where m is the model number, with m = 1, 2, . . . ., M, 
M is the maximum value of m and J is the maximum 
value of j.

(a) Fit a regression tree for rmi and determine the 
leaf node area rmi (j = 1, 2, . . . ., J) for the mth 

tree.
(b) Number of leaf nodes j (j = 1, 2, . . . ., J) is 

determined from Eq. 4: 

cm;j ¼ arg min
c

X

xi2Rm;j

L yi; fm� 1 xið Þ þ cð Þ (4) 

(d) To minimize the loss function and estimate the 
value of the leaf node area, a linear search is used in 
this step.

Tree update according to Eq. (5):

fm xð Þ ¼ fm� 1 xð Þ þ
XJ

j¼1
cm;jI x 2 Rm;j

� �
(5) 

where, if x 2 Rm;j, then I = 0 or I = 1.
V. Determination of the final tree model (Eq. (6)):

f
_

xð Þ ¼ fM xð Þ ¼
XM

m¼1

XJ

j¼1
cm;jI x 2 Rm;j

� �
(6) 

From an ensemble of weaker models, GB creates 
new models such that each of the created models 
minimizes the loss function L y; f xð Þð Þ, to fit a more 
accurate model with improved overall accuracy. To 
minimize overfitting, a boosting threshold criterion 
based on either the achieved prediction accuracy or 
the maximum number models to be created is 
adopted. The weak learning process of GTB deci-
sion tree is complemented by improving the repre-
sentation, optimization and generalization so as to 
capture the higher-order information and is invar-
iant to scaling of sample data. Further, by weight-
ing the combination scheme, GTB can avoid 
overfitting by fitting the residuals of the regression 
tree at each iteration using the negative gradient 
values of loss.

Random forest (RF)
RF is made up of combined multiple decision trees 
(Figure 4) trained upon random subsets of the labeled 
samples and features (Breiman, 2001). A decision tree 
itself is a deterministic data structure for modeling 

decisions rules. At each internal node of the decision 
tree, a feature is chosen to infer the class determining 
the specific decision by splitting the incoming training 
samples to maximize the information gain. Similarly, 
each tree in the ensemble is constructed from a sample 
(bootstrap sample) that is replaceably drawn from the 
training set. The RF training process is similar to 
CART; however, to increase computational efficiency 
in RF, each tree only utilizes a random subset of 
features at each node to reduce correlation (Figure 4).

Let u 2 U � R q be an input feature vector, 
andv 2 V � R be its corresponding target value for 
regression. For a given internal node j and a set of 
samples Sj � U � V , the information gain achieved by 
choosing the kth feature to split the samples in the 
regression problem is computed according to Eqs. 
(7–9): 

Ik
j ¼ H Sj

� �
�

Sk
j;L

�
�
�

�
�
�

Sj
�
�
�
�

H Sk
j;L

� �
�

Sk
j;R

�
�
�

�
�
�

Sj
�
�
�
�

H Sk
j;R

� �
(7) 

H Sð Þ ¼
1
Vj j

X

v
v � �vð Þ

2 (8) 

�v ¼
1
Vj j

X

v
vð Þ (9) 

where L and R denote the left and right child nodes, 

Sk
j;L ¼ u; vð Þ 2 Sj uk < θk

j

�
�
�

n o
, Sk

j;R ¼ SjnSk
j;L, uk is the kth 

feature of the feature vector u, θk
j is the splitting 

threshold chosen to maximize the information gain 
Ik

j for the kth feature uk, and | ⋅ | is the cardinality of 
the set. H Sð Þ denotes the variance of all target values in 
the classification or regression problem.

In training the RF algorithm, the splitting θk
j is 

implemented recursively until either the information 
gain Ik

j is insignificant or the training samples input 
into a given node is less than the preceding threshold 
θk

j� 1. Using the out-of-bag errors is often adopted as 
the option for parameter tuning in (Biau & Scornet,  
2016). The advantage of RF is that it can produce 
stable, robust and accurate results even with mini-
mal tuning of the hyperparameters. The algorithm is 
easy to parameterize, insensitive to over-fitting and 
deals with outliers in training data, reporting the 
classification error and variable significance. 
Further, RF is able to process multidimensional 
features from both continuous and categorical data-
sets. In implementing RF, predictions for classifica-
tion are performed by obtaining and bagging the 
majority class vote from the individual tree class 
votes. The output classification result for a new 
sample is obtained through a majority voting of 
the individual tree results. For RF tuning, the 
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number of trees (nTree) and the number of variables 
per split (mTry) are optimized.

Support vector machine (SVM)
The SVM model fits an optimal separating hyper-
plane or hyperplanes in a high-dimensional space, 
to create an optimal boundary between two classes 
that enables the prediction of labels from one or more 
feature vectors (Noble, 2006). The hyperplane(s) are 
orientated furthest from the closest data points from 
each of the classes. These closest points are the sup-
port vectors. Like the ensemble algorithms, SVM 
comprises of a set of related learning algorithms for 
classification and regression. Given a labeled training 
data set: 

T ¼ x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þf g ; x1 2 Rd and yi
2 � 1; þ 1ð Þ

(10) 

where xi is a feature vector representation,yi the class 
label of a training compound I and n is the elements in 
the training data sets. The optimal hyperplane is 
defined by 

wxT þ b ¼ 0 (11) 

where w is the weight vector, x is the input feature 
vector and b is the bias. w and b, respectively, satisfy 

the inequalities for all elements of the training set as 
(Eqs. 12–13). 

wxT
i þ b � þ1; if yi ¼ þ1 (12) 

wxT
i þ b � � 1; if yi ¼ � 1 (13) 

The aim of training in SVM model is to determine 
the w and b so that the hyperplane separates the data 
and maximizes the margin 1= wk k2. Vectors xi for 
which wxT

i þ b
� �

¼ 1 will be termed support vector 
as depicted in Figure 5.

By solving the optimization task (Eq. 14), the linear 
SVM determines the optimal separating margin: 

minimize
1
2

wj j2 þ C
Xn

i¼1
εi

� �

; εi

� 0 subjecttoyi wTxi þ b
� �

� 1 � εi; i
¼ 1; 2; . . . ; n (14) 

where C is the optimum cost parameter, εi defines the 
positive slack variables, w is a normal vector and b is 
a scalar quantity. For nSV support vectors, 
W becomes a linear combination of the training 
vectors (Eq. 15), and b the average of all support 
vectors (Eq. 16): 

W ¼
Xn

i¼1
αiyixi (15) 

Figure 4. Illustration of the random forest classification structure.
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b ¼
1

NSV

XNSV

i¼1
Wxi � yið Þ (16) 

To expand the conventional linear SVM into the 
nonlinear cases, xi is replaced through mapping into 
the feature space θ xið Þ, such that xT

i x is expressed in 
the form θ xið Þ

Tθ xið Þ in the transformation feature 
space. The nonlinear discriminate function is 
expressed as in Eq. 17, where K xi; xð Þ ¼ θ xið Þ; θðxÞh i

and K xi; xð Þ defines the kernel function. 

f ðxÞ ¼ sgn
Xn

i¼1
αiyiK xi; xð Þ þ b

� �
(17) 

For better performance of SVM classifier in land- 
cover classification, Knorn et al., 2009 demonstrated 
that RBF kernel function is preferred due to accuracy 
and reliability (X. Yu et al., 2004), and was adopted in 
the current study. The K xi; xð Þ is defined as 

Kðx; yÞ ¼ < f ðxÞ; f ðyÞ > (18) 

where K is the kernel function, x, y are n-dimensional 
inputs; f is used to map the input from the n-dimen-
sion to m-dimensional space, and < x; y > denotes the 
dot product.

The kernel functions are used to calculate the scalar 
product between two data points in a higher-dimensional 
space without explicitly calculating the transformation 
from the input space to the higher dimensional space. 
The kernel computation is easier in the high dimensional 
space for the determination of the inner product of two 
feature vectors. This is an advantage in the complexity in 
computing the feature vectors for kernels. For the RBF 
kernel KRBF x; yð Þ ¼ exp � γ x � yk k

2� �
, though the cor-

responding feature vector is infinite dimensional, the 
kernel computation is trivial.

In implementing the SVM classifier with the RBF 
kernel, there are two main determinants (Ballanti 
et al., 2016; Qian et al., 2015):

(i) Optimum cost parameter C which determines 
the size of the allowed misclassification for 
spectrally overlapping training data to enable 
the possible adjustment of the training data. To 
minimize model over-fitting larger C values are 
preferred.

(ii) Kernel width parameter γ determines the 
degree of smoothing and shape of the hyper-
plane dividing the class (Melgani & Bruzzone,  
2004). Increasing the γ affects the shape of the 
class-dividing hyperplane which may influence 
the accuracy of the classification results.

Multilayer perception neural network (MLP-ANN)
Artificial neural networks (ANN) have different topo-
logical structures including multilayer perceptron 
(MLP), adaptive neuro fuzzy inference system 
(ANFIS), generalized regression neural networks 
(GRNN), recurrent neural networks (RNN), and radial 
basis function network (RBFN). These ANN models 
can generally be categorized into feedforward neural 
networks (FFNN) and RNN. The most popular FFNN 
is the MLP-ANN trained with a backpropagation 
learning algorithm. FFNN have the advantages that 
with single or few hidden layers suitable activation 
functions, the model can approximate a complex and 
nonlinear system. The adopted MLP-ANN model for 
this study is represented in Figure 6.

In Figure 6, R = total number of inputs; z = hidden 
neurons; ωi.j(1) = weight of first layer between the 
input j and the ith hidden neuron; ωi.j(2) =weight 

Figure 5. Maximum margin-minimum norm classifier in support vector machine with optimal hyperplane for linearly non- 
separable classes (reprinted with permission from Y. Ouma et al. (2022). Copyright 2022 ISPRS archives).
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of second layer between the ith hidden neuron and 
output neuron; bi(1) =bias weight for the ith hidden 
neuron; and b1(2) =bias weight for the output neuron.

Multi-classifier and multi-feature fusion approach

This study proposes a multi-classifier and multi- 
feature fusion based on the concept of feature in- 
feature out (FEI-FEO) post-classification feature 
fusion approach where the extracted features with 
the highest accuracy are combined under mutual 
exclusivity conditions. The rationale behind FEI-FEO 
is that when the scene information from different 
classifiers C1ðXÞ;C2ðXÞ; � � �;CMðXÞf grepresents dif-
ferent parts of the scene at different accuracies, the 
features extracted with the highest accuracies can be 
combined to obtain the complete and more accurate 
global information for a given LULC scene. The pro-
posed FEI-FEO based fusion approach relies on the 
complementary combination of the input features 

Fm1; Fm2; Fm3; � � �; Fmnf g to produce the new scene 
global features F1; F2; F3; � � �; Fnð Þ with the highest 
extraction accuracies. The FEI-FEO feature fusion 
approach is empirically illustrated in Figure 7.

The FEI-FEO data fusion process addresses a set of 
features with the aim to improve, refine or obtain new 
features (Dasarathy, 1997). The advantage of the opti-
mal FE1-FEO fusion approach is on the fact that the 
optimal class is detected, and this can permit general-
ization of the classifier for class or feature detection with 
even lesser number of training samples.

Accuracy assessments

For evaluation of the performance of the classifiers, 
confusion matrices were generated based on 

a crosscheck between the classification results and test 
samples. The following metrices are used: (i) producer’s 
accuracy (PA); (ii) user’s accuracies (UA); (iii) overall 
accuracy (OA); (iv) kappa index; and (v) F1-score 
(Eqs. 19–22). PA measuring the degree of precision is 
the proportion of the samples that truly belong to 
a specific class among all those classified as that specific 
class, while UA or recall is the proportion of samples 
classified as a specific class among all the samples that 
truly belong to that class (Nevalainen et al., 2017). The 
OA is the number of correctly classified samples to the 
total number of samples. The kappa index provides the 
agreement of prediction with the true class, considering 
the random chance of correct classification, and the F1- 
measure is the harmonic mean of precision and recall 
and was calculated to determine the performance at 
a classifier and class levels. 

UA ¼
Kii

Kiþ
; and PA ¼

Kjj

Kþj
(19) 

OA ¼
Pn

i¼1 Kii

T
(20) 

K ¼
T
Pn

i¼1 Kii �
Pn

i;j¼1 KiþKþj
� �

T2 �
Pn

i;j¼1 KiþKþj
� � (21) 

F1 � score ¼ 2 �
UA � PA
UAþ PA

(22) 

where PA = producer’s accuracy; UA = user’s accu-
racy; OA = overall accuracy; K = Kappa coefficient; 
n = number of classifications; Kii = number of cor-
rect classification; Kiþ = number of pixels in the ith 
row and Kþj = number of pixels in the ith column; 
and T = number of pixels used for the accuracy 
evaluation.

Figure 6. Topology of a three-layer MLP-ANN.
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The statistical significance of the differences in the 
classification accuracy between the classifiers was eval-
uated using pairwise z-score test. The z-test was applied 
to the OA results for testing statistical significance at 
a significance level of 5%. If z > 1.96, the test is signifi-
cant, leading to the conclusion that the obtained results 
differ from each other.

Results

Influence of training data size on classifier 
performance

In this section, the accuracy for urban LULC mapping 
is considered as a function of the number of training 

samples or batch size required for reliable labeling, 
training and classification. The optimization of the 
training samples is important as it is time- 
consuming, costly to obtain requires more storage 
and computation power. Varying the training size, 
the classifier accuracy outputs were averaged with 
the results in presented in Figure 8.

The classification accuracy is observed to 
improve for all the classifiers as the number of 
training samples increases and tended to converge 
to an optimal classification rate when the number of 
training samples was above 10,500 pixels, with all 
the classifiers performing at >80% in overall accu-
racy. The satisfactory performance with higher 
number of training samples is attributed to the 

Figure 7. The feature in-feature out (FEI-FEO) fusion for post-classification fusion.

Figure 8. Variation of number of training samples and classifier overall average accuracy.
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process required to minimize the separability, noise 
and time invariance of the sound features. The 
results in Figure 8 depict the significance of training 
samples as a critical hyperparameter in the imple-
mentation and comparison of machine learning 
classifiers.

Accuracy assessment

Class producer and user accuracies
The results for the PA and UA for each class in the 
respective years are presented in Figure 9. For 

detecting built-up areas using the PA metrics, MLP- 
ANN had the highest average of PA 93.2%, followed 
by RF (90.6%), SVM (89.3%) and GTB (85%). In 
terms of the UA, MLP-ANN and RF had the highest 
values of 93% and 92.3%, respectively, while SVM 
and GTB had respective UAs of 91.9% and 86.1%. 
The water bodies were classified with consistently 
higher average PA accuracy of 99% by MLP-ANN, 
followed by RF (98.1%), GTB (97.5%) and SVM 
(97.2%) and the corresponding UA values were RF 
and MLP-ANN equally at 99.7%, SVM (99.3%) and 
GTB (95.3%).

Figure 9. Average yearly PA and UA metrics for LULC classes.

EUROPEAN JOURNAL OF REMOTE SENSING 11



For bare-soil mapping, RF attained average PA 
of 85.6% which was 0.1%, 3.5% and 5.6% higher 
than MLP-ANN, GTB and SVM, respectively. The 
UA for bare soil was highest for MLP-ANN 
(88.1%) and followed by RF (83.9%), SVM 
(83.7%) and GTB (81.3%). In mapping the bare- 
soil cover, all the classifiers achieved lower PAs 
compared to built-up areas and waterbodies 
classes. This could be attributed to the spectral 
confusion of bare-soil with the impervious sur-
faces including buildings and roads. For the vege-
tation classes, all the classifiers attained the lowest 
average PA of 83.5%, with grass having the highest 
average PA of 88% and shrubs having the least PA 
of 80.5%. In terms of the UA, the average accuracy 
was 85.3% and the trend was the same with grass 
(92.3%), forest (83.2%) and shrubs (80.3%). The 
low PA and UA in vegetation mapping is contrib-
uted to by the intra-spectral confusion in the 
vegetation classes.

Apart from the spectrally homogeneous water 
body, the PA and UA measures are observed to vary 
with the urban LULC class, time, sensor and the clas-
sifier. This requires further statistical evaluation of the 
classification results to determine the suitability of the 
classifiers for detecting and extracting specific urban 
LULC classes.

Average class classification accuracy
Table 2 presents the average metrics in terms of OA, 
F1-score, TPR (true positive rate or sensitivity), FPR 

(false positive rate) and AUC (area under the roC 
curve) measures for each class for the 8-epochs. All 
the classifiers mapped water bodies with the highest 
OA, F1-score, TPR and AUC scores for the 35-year 
period. For the built-up class, MLP-ANN had the high-
est accuracy. The vegetation classes were mapped with 
the least accuracy as compared to the other classes, with 
MLP-ANN being the best classifier for mapping grass, 
and RF being the most suitable for mapping shrubs and 
forest. MLP-ANN is recorded to be best classifier for 
detecting bare soil at 98.1%, which is 1.1% higher than 
the least accuracy from SVM.

For the overall average mapping of the LULC classes, 
RF achieved the highest performance with OA of 
92.8%, MLP-ANN (91.2%), SVM (90.9%) and GTB 
(87.8%). The same performance pattern was observed 
from the overall average F1-score, TPR and AUC 
except for the FPR where GTB tended to have lower 
FPR values compared to the better performing classi-
fiers per LULC class. The results of the TPR and FPR 
are presented in Figure 10 in terms of the area under 
ROC for all the classification models. On average for all 
the classes, the RF model had the highest area under 
ROC curve of 0.981, which is 0.021, 0.029 and 0.077, 
respectively. higher than MLP-ANN, SVM and GTB 
classifiers in mapping the urban LULC classes. The 
results in Figure 10 are the average results after tuning 
the classifier hyperparameters to yield the best results 
for a given year and for the urban LULC classes.

Figure 11 presents the summary of the F1-scores for 
each classifier, class and year. RF had the highest 

Table 2. Classifier-class average accuracy.
Built-up OA (%) F1-score TPR FPR AUC

GTB 97.2 0.848 0.861 0.018 0.921
RF 98.6 0.912 0.923 0.008 0.957
MLP-ANN 99.0 0.928 0.931 0.004 0.963
SVM 98.5 0.901 0.919 0.009 0.955

Water

GTB 99.0 0.962 0.960 0.953 0.974
RF 99.6 0.989 0.970 0.997 0.997
MLP-ANN 99.8 0.994 0.995 0.997 0.998
SVM 99.5 0.984 0.987 0.997 0.996

Grass

GTB 97.2 0.633 0.604 0.008 0.798
RF 97.8 0.811 0.826 0.010 0.908
MLP-ANN 97.9 0.772 0.755 0.006 0.874
SVM 97.0 0.720 0.728 0.010 0.859

Shrubs

GTB 90.6 0.817 0.920 0.146 0.887
RF 94.7 0.867 0.939 0.076 0.931
MLP-ANN 92.8 0.844 0.941 0.102 0.920
SVM 93.9 0.857 0.921 0.079 0.921

Forest

GTB 91.7 0.740 0.668 0.020 0.824
RF 95.4 0.872 0.816 0.010 0.903
MLP-ANN 94.2 0.833 0.754 0.012 0.871
SVM 95.0 0.860 0.799 0.013 0.893

Bare-soil

GTB 97.2 0.795 0.813 0.017 0.898
RF 97.9 0.826 0.839 0.012 0.914
MLP-ANN 98.1 0.858 0.881 0.014 0.933
SVM 97.0 0.791 0.837 0.022 0.907
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average F1-score of 0.879 performing marginally 
higher than MLP-ANN by 0.007. SVM and GTB, 
respectively, recorded average F1-scores of 0.852 and 
0.799. For the specific years, the performance of the 
classifiers varied with MLP-ANN recording the high-
est F1-score of 0.994 and the least F1-score of 0.633 
was from GTB and GTB also recorded the least F1- 
scores for all the years. In overall from the F1-score 
measures, water was the best mapped land-cover for 
all the years. Based on the average class accuracy 
measures in Table 2, the best classifier for detecting 
a specific urban LULC class can be identified for 
a given case study.

Overall accuracy and kappa index
The overall accuracy results are presented in 
Figure 12, indicating that for all the years and 

classes, RF performed better than all the classifiers 
with average OA of 92.8%. It is, however, observed 
that only MLP-ANN marginally outperformed RF in 
1984, 1990 and 2010. In terms of the OA, RF per-
formed better than MLP-ANN by 1.6%. In close 
performance to MLP-ANN is SVM with average 
OA of 90.9% and GTB had average OA of 87.8% 
performing lower than the other classifiers by 
between 3 and 5%. The kappa indices in Table 3 
show that RF and MLP-ANN had average kappa 
index values of 0.880 and 0.863, while SVM and 
GTB achieved kappa indices of 0.860 and 0.794, 
respectively. Notable is the similarity in the perfor-
mance trend between the classifiers with the varying 
multitemporal scales and multisensor data sets.

The results for the inter-comparison of the ML 
classifiers using the pairwise z-score test, such 

Figure 10. Average ROC curves for the classifiers.

Figure 11. Classifier-class-year F1-scores.
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that z-score>1.96 is considered statistically different at 
α ¼ 0:05 level of significance, are presented in Table 4 
with the average results that for the case study, there 
was no significant difference between the classifiers in 
terms of the overall accuracy of performance. The 
notable significant difference is between GTB and 
the other classifiers with a z-score>1, and the least 
difference is between RF and MLP-ANN at p-value  
= 0.881.

LULC classification and change detection results

The urban LULC mapping and change detection 
results for the GGPA are presented in Figure 13, 
with the area coverage and percent change in area as 
mapped by each classifier. The spatial-temporal trends 
for each class are briefly discussed below.

Urban built-up: In 1984, RF and SVM estimated the 
built-up area to be 2.4% of the total area (~22.6 km2), 
while both GTB and MLP-ANN were at 2.6% (25.3  
km2) as shown in Figure 13. All the classifiers showed 
progressive growth in urban area development in the 
successive years with the highest growth change 
recorded between 1984–1990 ranging from 62 to 

72% for all the classifiers. The classifiers reported 
different statistics for the least growth period with 
RF and MLP-ANN showing that between 2005 and 
2010 the urban growth was at 4% and 6%, respectively, 
while during the same period GTB and SVM showed 
double digit growth at 15% and 13%, respectively 
(Figure 13). In latest year 2020, the total built-up 
area was mapped by the classifiers as MLP-ANN 
(108.14 km2), RF (113.39 km2), GTB (135.17 km2) 
and SVM (126.23 km2). Given that RF detected the 
urban areas with the highest accuracy in 2020, it 
implies the other classifiers overestimated the built- 
up area. Though the built-up class mixing increases 
the classification accuracy, it does not capture the 
specific elements of the urban built-up ecosystem 
which comprises of residential, commercial, industrial 
and impervious surfaces.

Water: The main water body within the study area 
is the Gaborone dam. For all the classifiers, the homo-
geneous water body was mapped with highest accu-
racy 99% on overage. In terms of the changes in 
surface area, there are observed fluctuations in the 
dam area and the results show that all the classifiers 
recorded maximum increase in the surface area in the 

Figure 12. Average overall accuracy performance of the classifiers and the FEI-FEO fusion.

Table 3. Average kappa coefficients for the classifiers per year.

Year

Kappa index

GTB RF SVM MLP-ANN

1984 0.761 0.864 0.862 0.891
1990 0.696 0.799 0.801 0.806
1995 0.767 0.921 0.898 0.872
2000 0.868 0.936 0.923 0.922
2005 0.768 0.900 0.855 0.846
2010 0.893 0.875 0.905 0.930
2015 0.717 0.845 0.751 0.788
2020 0.884 0.907 0.890 0.856

Table 4. Average z-scores and p-values for ML model pairs.
Classifier pairs z-score p-value Significance level

GTB-RF −1.687 0.092 No
GTB-SVM −1.308 0.191 No
GTB-ANN −1.476 0.140 No
RF-SVM 0.362 0.717 No
RF-ANN 0.150 0.881 No
SVM-ANN −0.194 0.846 No
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periods of 1984–1990 and 2015–2020 and decreases of 
more than 50% in 2000–2005 and 2010–2015 
(Figure 13).

Bare-soil: Most of the land in the study area are 
covered by bare soils especially during most parts of 
the year. For all the years, the classifiers presented 
different results in terms of the surface area occupied 
by bare soil/land. In 1984, GTB and MLP-ANN esti-
mated bare soil to occupy 8% (72.35 km2) of the total 
area, while RF results indicated that bare soil was 12% 
(110.82 km2) and SVM was 6% (57.93 km2). In 2020, 
the results from GTB and MLP-ANN were nearly the 
same at between 5–6% (52.36−56.0 km2), respectively, 
and RF and SVM estimated bare-soil at 107.70 km2 

(11%) and 137.73 km2 (14%), respectively. Between 
1984 and 2020, the overall area covered by bare soil 
reduced by 3% (RF), 22% (MLP-ANN), 28% (GTB) 
and increased by 138% (SVM).

Vegetation: Vegetation cover comprised of grass, 
shrubs and forested areas. Similar to water, the abun-
dance of natural vegetation cover is influenced by the 

climatic conditions. For the 35 years of study, all the 
classifiers showed that there was an increase in forest 
and grassland, while the areas covered by shrubs 
decreased. From RF results, the shrubland reduced 
by nearly 50% in 1984 from 659.49 km2 to 300.97  
km2 in 2020. In the same duration, MLP-ANN and 
SVM estimated that shrubs occupied nearly the same 
area of 578.99 km2 and 572.66 km2, respectively, and 
in 2020 the classifiers estimated shrubland to be 
335.09 km2 and 246,98 km2, respectively. The GTB 
results indicated that shrubland occupied 607.18 km2 

in 1984 and 331.03 km2 in 2020 (Figure 13). This 
implies that most of the land occupied by built areas 
as a result of conversions from shrublands.

Post-classification feature fusion of classifier 
results

From the results above, it is observed that an urban 
LULC class(s) can accurately be detected and extracted 
by a specific classifier. Thus, to improve on the overall 

Figure 13. LULC year-class areas and change detection using GTB, RF, SVM and MLP-ANN.
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accuracy for urban LULC mapping using the ML 
methods, the proposed FEI-FEO post-classification 
feature fusion is adopted to maximize on the advan-
tages of the different classifiers and to improve on the 
accuracy of urban LULC mapping. The output of the 
ML-fusion results is presented compared in Figure 14, 
for 2015 which had the least multisensor performance 
(Figure 12). The results indicate that the proposed 
ensemble of the best classifier class results as obtained 
from the MLP-ANN and RF classifiers improves the 
overall accuracy from 87.5% to 90.1% for 2015. The 
results of the best classifier class FEI-FEO fusion are 
compared in Figure 15 with overall improvements in 
the multitemporal and multisensor urban LULC map-
ping where the different classes are mapped accurately 
by different classifiers with results in Figure 12. 

Table 5 presents the best class classifier for each year 
and the resulting post-classification fusion accuracies.

To further illustrate the significance of FEI-FEO 
approach, Figure 15 presents a comparison of the 
classification results for 2020 in relation to the 
ground-truth reference imagery from Google Earth. 
It is observed that the RF and SVM results have the 
same shape and structural patterns in terms of map-
ping the urban areas and captured the bare soils more 
accurately. In 2020, MLP-ANN tended to underesti-
mate the built-up areas, while GTB classified some 
urban areas as bare soils. In mapping waterbodies, 
RF and MLP-ANN were able to differentiate the 
land–water interfaces better than the other classifiers 
which tended to map the bare soils around the water 
bodies as built-up areas. RF detected the shape of the 

Figure 14. Multiclass FEI-FEO post classification fusion.

Figure 15. Image-based ground-truth comparison of classification results for different LULC classes and at different locations 
within the study area for 2020 (reprinted with permission from Y. Ouma et al. (2022). Copyright 2022 ISPRS archives).

Table 5. Summary of best class classifier per year.

LULC class

Best machine learning classifier and ML-fusion accuracy (%)

1984 1990 1995 2000 2005 2010 2015 2020

Built-up MLP-ANN GTB MLP-ANN MLP-ANN MLP-ANN MLP-ANN MLP-ANN RF
Water MLP-ANN MLP-ANN SVM SVM MLP-ANN MLP-ANN RF RF
Grass MLP-ANN SVM RF MLP-ANN MLP-ANN RF MLP-ANN RF
Shrubs RF MLP-ANN RF RF RF MLP-ANN RF RF
Forest RF RF RF RF RF GTB RF RF
Bare soil MLP-ANN MLP-ANN RF SVM GTB SVM RF RF
ML-Fusion Accuracy 93.7% 93.4% 96.5% 97.1% 95.5% 96.2% 90.1% 93.4%
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dam water body more accurately. For the vegetation 
cover in 2020, it is observed in Figure 15 that RF and 
SVM mapped the forest and bare soil areas with the 
same degree of compactness, while MLP-ANN and 
GTB tended to map the forest area as mixed with 
shrubs. Visually, however, the results shows that the 
classifiers tend to have closely related results.

Discussion

Typified by increasing population and infrastructural 
development, urbanization is one of the anthropo-
genic activities that is critical to land-use change. As 
such, accurate urban LULC information is imperative 
in providing evidence towards sustainable urban area 
planning and management. Previous studies have 
revealed that the capability of classification with 
remote sensing data, as the most practical data source 
of urban LULC mapping, is dependent on the classi-
fier, the input data and on the complexity of the land-
scape (Klein et al., 2009). On the significance of 
classifiers in urban LULC mapping, Pandey et al. 
(2021) noted that the differences in the accuracy 
resulting from the performance of a classifier was 
higher than the influence of the land-use land-cover 
characteristics of a given case study. For mapping 
complex urban landscapes, the improved perfor-
mances of machine learning algorithms have resulted 
in an increase in their applications (Jozdani et al.,  
2018). This study thus evaluated the performance of 
two supervised ensemble classifiers (GTB and RF), 
pixel-based SVM and neural network MLP machine 
learning classifiers for urban LULC mapping.

The focus of the pixel-based SVM algorithm is on 
the pixel independence (Johnson & Xie, 2013). SVM 
has been recorded to have advantages that include 
having high classification accuracy with small training 
data and is also more robust for data with low noise 
levels (Pelletier et al., 2017). On the other hand, the 
object-based (RF and GTB) and neural network 
(MLP) classifiers are able to take into account the 
complex neighborhood spectral and spatial character-
istics. Despite several studies having explored the 
robustness of the performances of different classifiers 
with remote sensing data sets, the identification of the 
most appropriate classifier for mapping a specific 
urban scene and for a specific LULC feature is still 
a challenging task (Pandey et al., 2021). Some of the 
previous studies recorded similar results to this study 
as represented in Figure 12 and Table 2, where the 
performances of the classifiers vary for the same scene. 
However, for a different case study, object-based clas-
sifier performed better than pixel-based SVM (Abdi,  
2019; Conchedda et al., 2008; Thanh Noi & Kappas,  
2017. Srivastava et al. (2012) and Dixon and Candade 
(2008) compared different machine learning techni-
ques and different Landsat sensors and concluded that 

SVM and ANN performed better on Landsat ETM+, 
while SVM gave better results with Landsat-TM data. 
These same observations are noted in the current 
study in which different Landsat sensors MSS, TM, 
ETM+ and OLI were classified with different accuracy 
for different years as presented in Table 4. Huang et al. 
(2002) also noted that with Landsat TM/ETM+, ANN 
performed better than SVM. Pal (2005) concluded that 
the performances of RF and SVM were similar if all the 
required classifier hyperparameters were optimally set. 
Erbek et al. (2004) and Deng et al. (2008) further 
reported that the output LULC class areas also varied 
in the different Landsat sensor satellite data. Besides 
the scene LULC overall classification accuracy, similar 
performance patterns are observed in this study for 
each urban LULC class or feature.

The noted difference between RF and MLP-ANN is 
that the performance of RF is more stable for all the 
years and not significantly influenced by the spectral 
and radiometric differences in the Landsat sensors. 
The stability of the RF classifier has been reported to 
be based on its ability to handle category type features, 
increased number of trees, as well as the bagging and 
random concepts resulting into its efficiency and pre-
cision (Gislason et al., 2006; Talukdar et al., 2020). 
Further, the superior performances of RF and MLP- 
ANN have also been attributed to the fact that the 
classifiers tend to be tolerant to noise and are signifi-
cantly more robust towards both random and sys-
tematic noise of the training data sets (Breiman,  
2001; Pelletier et al., 2017). Based on its extended 
feature set (Georganos et al., 2018), SVM results 
were observed to be stable with sensor and time and 
exhibited nearly the same performance trend as RF 
and MLP-ANN. GTB performance was most effected 
by the radiometric and spectral resolution differences 
of the sensors as it recorded the least accuracy. The 
lower performance by GTB can be attributed to the 
decision trees being too sensitive to small changes in 
the training data sets and tends to overfit the model 
(Prasad et al., 2006). This implies that the GTB 
requires continuous readjustments of the of the deci-
sion trees to minimize the classification errors (Awad 
& Khanna, 2015).

For the study area, MLP-ANN and RF are observed 
to be the dominant classifiers (Table 5). Despite the 
observed marginal differences in the classification 
results, the study showed that the accuracies of the 
classifiers were similar at 5% level of significance with 
all the classifiers performing at above 85% overall 
accuracy. In a similar evaluation, Hackman et al. 
(2017) observed that the advanced classification 
machine learning algorithms may not always be 
advantageous when applied to process multispectral 
image data and the focus should be on the abilities of 
the classifiers to extract specific LULC classes. Despite 
the standalone classifiers exhibiting good results in 
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urban LULC classification, more accurate classifica-
tion techniques are continuously being sought (P. 
Zhang et al., 2018). Due to the differences in classifier 
performance for the same scene features, this study 
proposed the FEI-FEO post-classification feature 
fusion approach that takes advantage of the classifiers 
accuracy in mapping a specific urban LULC features. 
The FEI-FEO hybridization has the potential to dis-
criminate and enhance the robustness and accuracy of 
urban LULC classification results.

The post-classification results presented statistically 
in Table 5 and in Figures 12, 14, and comparatively in 
Figure 15 in terms of classification accuracies shows 
that the proposed feature fusion approach is suitable 
for maximizing the performance of machine learning 
classifiers. The multifeature fusion ensemble takes 
advantage of the neighborhood and proximities of 
the pixels mapped in each classifier to generate more 
accurate and stable urban LULC results. Further, the 
results in Table 5 with respect to specific class detec-
tion indicate the ability of ANN to model nonlinear 
features and adequately handle the uncertainties that 
exist in spatial data. The multifeature mapping cap-
ability of the proposed FEI-FEO is considered useful 
in land-use/cover classification tasks in the complex 
urban environments with high spatial heterogeneity. 
The utility of FEI-FEO approach should be investi-
gated for each case study to determine the most effec-
tive classifiers for mapping specific features.

Conclusions

Mapping of urban landscapes is a complex and chal-
lenging task due to the spectral overlaps and spatial 
heterogeneity of the urban features. This study was 
carried out, first to implement and evaluate the accu-
racy of ensemble decision tree-based (GTB and RF) 
classifiers, and SVM and MLP-ANN machine learning 
classification algorithms for mapping of urban land- 
use classes from multitemporal and multisensor 
Landsat data from 1984 to 2020 at 5-year intervals. 
The second goal was to maximize the potentials of the 
ML classifiers for improving the urban LULC map-
ping through a post-classification feature in – feature 
out fusion approach. For mapping the six LULC 
classes over the 35 years, MLP-ANN was the preferred 
classifier for the urban built-up area and water body. 
The optimal classifiers for extracting the vegetation 
classes were determined as grass (MLP-ANN), shrub-
land (RF) and forest (RF). In terms of the combined 
overall accuracy for the eight-epoch years, RF average 
performance was highest at 92.8% which was 1.6%, 
1.9% and 5.0% higher than MLP-ANN, SVM and 
GTB, respectively. For improved ML classifier perfor-
mances, the study experiments showed that optimal 
training sample size should be determined. Based on 

the advantages of a given classifier in mapping 
a particular urban LULC class or feature, and to 
improve on urban LULC mapping accuracy, an 
ensemble of ML classifiers in recommended in the 
form of post-classification feature fusion of the best 
classifier outputs. For multisensor and multitemporal 
urban LULC mapping, the proposed post- 
classification FEI-FEO fusion approach increased the 
accuracy of mapping the urban LULC classes as it 
combines the inherent feature detection and classifica-
tion abilities in the machine learning classifiers. The 
study results show that the detection and mapping of 
urban LULC classes with a given classifier cannot be 
generalized and depends on the sensor spectral resolu-
tions, and is also influenced by the temporal, atmo-
spheric, illumination and geometric variabilities. As 
proposed in this study, accurately derived information 
on urban LULC is useful for urban land-use planners 
and managers for decision support on urban planning, 
management and for growth policy development. This 
study recommends further evaluations on the perfor-
mances of the machine learning and the FEI-FO 
approach in this study in comparison with deep learn-
ing classification models for mapping the complex 
urban environments.
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