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ABSTRACT 
Heat stress remains a major challenge affecting poultry production in sub-tropical and tropical environments; 

hence it continues to receive attention. The present study aimed to discuss heat stress and its effects on poultry 

production and suggests mitigation strategies to combat the effects of increased environmental temperature on 

poultry performance. Poultry raised in hot climates suffers from heat stress, which reduces meat and egg 

production, reproductive performance, feed intake, and feed conversion efficiency leading to poor growth 

rates. Reduced feed intake results in a reduction in meat quality, growth, egg yield, and quality. A decrease in 

feed utilization efficiency is the major cause of poor growth performance in hot environments. To counteract 

the negative impacts of high ambient temperatures on the performance of poultry, a wide range of 

management practices are widely used, including nutrient manipulations (particularly protein and energy), 

electrolyte and vitamin supplementation, feed form (especially particle size and moisture content), choice 

feeding, controlled feeding, time of feeding, wet feeding, water management, and use of new breeds that thrive 

well in hot environments. These management practices help lower heat load and facilitate evaporative cooling, 

all of which may positively impact poultry performance and health. 
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INTRODUCTION 
 

There has been a significant increase in global average 

temperatures recently, which has affected the farming 

sector in the tropics (Barrett et al., 2019; Sohsuebngarm et 

al., 2019; Kennedy et al., 2022). High temperature above 

32
o
C depresses feed intake, leading to poor performance in 

poultry (Cassuce et al., 2013; Sohsuebngarm et al., 2019). 

In addition, the increase in temperature results in the 

number of etiologically harmful microorganisms in the 

environment around the animals increasing. Due to an 

increase in parasites and microorganisms, climate change 

influences disease emergence and transmission (Ranjan et 

al., 2019). When the temperature in a living organism 

exceeds the threshold limit (i.e., thermo-neutral zone), it 

disrupts normal physiological functions and causes cell 

damage (Mack et al., 2013; Kennedy et al., 2022). High 

environmental temperatures typically cause stress-related 

issues such as output losses, metabolic alterations, poor 

development, and inefficiency (Dayyani and Bakhtiari, 

2013; Afsal et al., 2018). At high temperatures, feed intake 

decreases while water intake increases (Mottet and 

Tempio, 2017). 

Due to their insulating feathers, the absence of sweat 

glands on the skin, and the significantly high mass-to-body 

surface area ratio, broiler chicken strains are highly 

susceptible to rising temperatures (Scanes, 2015; Sejian et 

al., 2018; Bernabucci, 2019) compared to laying hens. In 

broiler chickens, for instance, rigorous genetic selection 

has enhanced metabolic activity in the pursuit of a higher 

development rate, further eroding the potential of a 

modern bird to withstand heat (Tamzil, 2014; Bohler et al., 

2021). The broiler sector is confronted with heat stress, 

which raises production costs and degrades meat quality. 

This is attributable to the vulnerability of poultry to heat 

stress given the rapid metabolic and faster growth rates. In 

chickens, notably broilers, grown in hot climates, 

metabolic changes occur, resulting in a significant 
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reduction in breast muscle growth (Safdar and Maghami, 

2014). 

Heat stress is divided into two types: acute heat 

stress (AHS), which is characterized by exposure to high 

temperatures for a short time, and chronic heat stress 

(CHS), which is characterized by exposure to high 

temperatures for a longer time (Lara and Rostagno, 2013; 

Pawar et al., 2016). In contrast to acute heat stress, chronic 

heat stress can increase fat content while destroying the 

muscles (Song and King, 2015; Adu-Asiamah et al., 

2021). Besides the duration of excessive heat, the degree 

of heat stress influences the level of production (Adu-

Asiamah et al., 2021). Both AHS and CHS have the 

potential to produce a significant decrease in poultry 

metabolism, which could lead to substantial issues with 

broiler growth performance and carcass characteristics 

which include meat color change, water holding capacity, 

muscular pH, and meat juiciness (Song and King, 2015; 

Gonzalez-Rivas et al., 2020). 

Understanding the basic aspects underlying the 

causes, and impacts of heat stress, as well as, the 

approaches that can be used to mitigate or control such a 

widespread threat, will help solve worldwide food security 

challenges. Despite the ongoing debate in the literature on 

heat exposure, a synthesis of knowledge on such systems 

in terms of elevated ambient temperature exposure is still 

yet to be published. Therefore, this review aimed to 

discuss the management strategies that poultry producers 

can utilize to boost production in hot places around the 

world. 

 

EFFECTS OF HEAT STRESS ON POULTRY 

 

Heat stress (also referred to as hyperthermia) is a 

result of global warming and is considered one of the 

crucial factors that negatively influence poultry production 

(Vandana and Sejian, 2018). Excessive heat depresses feed 

intake, feed conversion efficiency, growth, meat and egg 

output, and reproductive function (Alverdy and Luo, 2017; 

Quinteiro-Filho et al., 2017; Rostagno, 2020). The reduced 

feed intake due to high temperatures has a negative effect 

on semen quality and fertility, thus leading to poor 

hatchability rates (Nawab et al., 2018; Nyoni et al., 2019). 

In addition, heat stress affects a poultry’s production 

performance, digestive health, body temperature, 

immunological responses, hunger hormone modulation, 

and oxidative properties (Goel, 2021). Recently, Nawaz et 

al. (2021) observed that heat stress degrades meat quality 

by altering the pH, water-holding capacity, and drip loss in 

the meat leading to changes in the normal meat color, 

flavor, and texture of chicken meat. Moreover, the effects 

of heat stress on meat quality include a reduction in 

protein synthesis and an increase in unfavorable fat 

(Kadykalo et al., 2018). By adjusting to changing climatic 

conditions, poultry frequently sacrifices their production 

capacity (Slawinska et al., 2019; Smith et al., 2019). 

However, poultry breeds are more resilient to climate 

change which continues to influence egg and meat 

production (Farag and Alagawany, 2018; Liverpool-Tasie 

et al., 2019). 

Overcrowding and high outside temperatures 

contribute to the development of heat stress. However, by 

increasing cooling options, which include using the 

fogging system, use of a wet pad system, and micro-

sprinklers, the heat load may be reduced by lowering the 

heat production level or changing the pattern of thermal 

production throughout the day (Gicheha, 2021). 

Commercial broilers' growth rate and meat yield are 

known to be slowed by high ambient temperatures (Zhang 

et al., 2017). In addition to poorer weight gain, high 

mortality rate, and reduced feed consumption, high 

temperatures negatively affect intestinal development 

(Rostagno, 2020). Furthermore, high temperatures disrupt 

broilers’ acid-base balance and increase respiratory rate 

which can contribute to respiratory alkalosis (Scanes, 

2015). 

Heat stress can have a substantial influence on layer 

flocks, but some precautions can be done to keep hens 

healthy and produce eggs. For instance, the lighting 

schedule should be changed to provide more light hours 

during the colder hours of the day to promote feed 

consumption during cooler times of the day. In addition, 

when it is hot outside, it is best to lower stocking density 

(Reddy and Ramya, 2015; Abbas et al., 2021). High 

stocking rates during the hot season can lead to inadequate 

ventilation. Early heat conditioning also appears to be an 

effective method for boosting the heat tolerance of some 

chicken breeds (Saeed et al., 2019). Layer flocks can be 

kept calm by starving or fasting during hot hours (Saeed et 

al., 2019; Bilal et al., 2021; Shakeri and Le, 2022). 

Therefore, egg producers must be prepared when summer 

temperatures rise as egg yield will decrease and flock 

mortality increases (Yahav, 2015; Sinha et al., 2018). 

During the chicks' first few days of life, chickens 

cannot regulate its heat production in response to the 

environmental temperature, therefore a decrease in 

environmental temperature leads to a reduction in body 

temperature (Ranjan et al., 2019). However, after 21 days, 

chicks start to develop additional homeothermic traits, 

such as the capacity to match their heat production to the 
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surrounding temperature, allowing them to endure the 

lowering effect that a decrease in ambient temperature has 

on their body temperature (Ranjan et al., 2019; Saeed et 

al., 2019). The normal body temperature of an adult 

chicken is 40.6-41.7
o
C (Ranjan et al., 2019). The 

comfortable ambient temperature for adult poultry is 18-

24
o
C, whereas chicks require higher temperatures of 

around 32
o
C in their first week of life which decreases 

over time (Scanes, 2015). Above 32
o
C, poultry fails to 

maintain their normal internal body temperature, due to 

the absence of sweat glands and the presence of complete 

feather coverage of the body (Hu et al., 2016). When the 

ambient temperature rises above 24
o
C, the internal body 

temperature of the chicken also rises, which causes it to 

consume less feed (Cassuce et al., 2013). Heat stress, 

panting, and prostration results at a temperature above 

35
o
C (Hu et al., 2016). When a chicken's core body 

temperature reaches a critical level of 47°C, sometimes 

known as the upper lethal temperature, chickens may die 

from heat prostration (Reddy and Ramya, 2015; Scanes, 

2015). In laying hens, heat stress causes low egg 

production and an increased number of hatching egg 

rejects in breeder hens (Abbas et al., 2021). Heat stress is 

less likely similar to affect younger and lighter chicks than 

older and heavier chickens (Farag and Alagawany, 2018). 

Therefore, heat stress can be alleviated by modifying the 

macro and microenvironments in which chickens are kept. 

High humidity and high environmental temperatures 

adversely affect poultry production (Saeed et al., 2019; 

Yousaf et al., 2019). 

 

POULTRY RESPONSES TO HEAT STRESS 

 

The susceptibility of broiler chickens to heat stress 

increases as air relative humidity and ambient temperature 

values are above the thermal comfort zone (16-23
o
C and 

50-70% relative humidity), making it hard for birds to 

release heat (Gamba et al., 2015). This results in their 

body temperature rising, which harms their growth 

performance. Hot weather causes poultry to perform 

poorly as it results in decreased feed intake and increased 

water intake (Saeed et al., 2019; Rahman and Hidayat, 

2020). At high temperatures, laying hens lay fewer eggs, 

watery eggs, and eggs with thin shells or even shell-less 

eggs due to lack of calcium; grow slower; and are more 

likely to become sick due to their compromised nutritional 

requirement as protein digestibility is reduced up to 9.7% 

(Habashy et al., 2017; Nawaz et al., 2021). In broiler 

chickens, decreases in growth rates, feed efficiency, 

immunity, and carcass quality were observed at high 

ambient temperatures (Dayyani and Bakhtiyari, 2013). 

Aswathi et al. (2019) reported a reduction in fertility 

percentage (-7.22%) and hatchability of fertile egg sets (-

2.51%) in breeders. Heat stress has a negative effect on 

not just feed intake and utilization, but also carcass quality 

(Rath et al., 2015, Aswathi et al., 2019; Rahman and 

Hidayat, 2020) due to the unfavorable partitioning of 

metabolizable energy consumed, with a large proportion 

of it being stored as fat and the remainder as muscle 

(Rahman and Hidayat, 2020). The signs of a heat-stressed 

chicken include panting, extending the wings, holding the 

wings slightly apart from the body, standing or lying 

down, and closing the eyes (Dayyani and Bakhtiyari, 

2013). A study by Altan et al. (2003) reported that heat 

stress increases fearfulness, induces oxidative stress, and 

initiates significant physiological responses in broiler 

chickens. Birds can survive a gradual increase in 

temperature, but a rapid increase in temperature will result 

in higher mortality rates (Rostagno, 2020). Figure 1 

illustrates the responses of chickens to heat stress. 

 

 
 

Figure 1. Poultry responses to heat stress  
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BIOLOGICAL CHANGES IN CHICKENS DUE 

TO HEAT STRESS 

 

Heat stress in poultry results in several behavioral, 

physiological, and neuroendocrine changes that influence 

health and performance (Ahmad et al., 2022). The major 

physiological changes that occur in heat-stressed poultry 

are discussed briefly below. 

 

Oxidative stress 

Reactive oxygen species (ROS) are peroxyl radicals 

produced by cells during normal metabolism and are 

required for physiological functions such as ion transport, 

immunomodulation, and cytokine production (Wasti et al., 

2020). Extra ROS is removed from cells through 

physiological detoxification processes. The Nrf2, a 

transcriptional factor when activated, under thermoneutral 

conditions, causes an increase in the production of a 

collection of antioxidant molecules that deal with the 

elevated ROS generated within the cell (Surai et al., 2019). 

Since the mitochondria create a significant amount of 

ROS, excessive mitochondrial ROS production may be a 

key factor in oxidative stress. Acute heat stress increases 

the formation of ROS from mitochondria, harming birds' 

skeletal muscles by oxidation (Akbarian et al., 2016). 

Acute heat stress causes an increase in the activity of the 

electron transport chain and mitochondrial substrate 

oxidation, which results in an excessive generation of 

superoxide (Akbarian et al., 2016). 

Heat stress has been linked to cellular oxidative 

stress in chickens (Estévez, 2015; Surai et al., 2019). 

Down-regulation of chicken uncoupling protein 

exacerbates the oxidative stress situation during the later 

stages of acute heat stress, leading to mitochondrial 

malfunction and tissue damage (Mishra and Jha, 2019). 

Constant heat stress reduces the mitochondria's ability to 

create oxidative energy and consequently increases the 

chicken’s uncoupling protein, this significantly alters the 

pattern of antioxidant enzyme activities, leading to the 

depletion of antioxidant reserves (Sahin et al., 2016). 

Oxidative stress has been linked to reduced growth rates, 

biological defects, loss of income, and severe health 

concerns in poultry (Estévez, 2015; Zaboli et al., 2019). 

While the chicken's physiology struggles to maintain 

thermal homeostasis, elevated ROS concentrations 

increase in stressful environmental situations (Sahin et al., 

2016). In an effort to defend itself from the damaging 

effects of ROS on cells, the body undergoes an oxidative 

stress state and starts to manufacture and release heat 

shock proteins (HSP,  Archana et al., 2017). Studies by 

Arnal and Lallès (2016) and Hao et al. (2017) have 

demonstrated that when exposed to heat stress, laying hens 

and broilers have higher HSP70 levels. 

 

Role of genes in heat stress 

The global poultry industry has difficulty with 

genetic screening for high-temperature tolerant broilers 

(Zeferino et al. 2016). Therefore, crossing commercial 

chickens with strains that are highly tolerant to high 

temperatures can also be used to integrate heat stress 

resistance into the genome. The most common breeding 

approach for generating a commercial hybrid robust to 

tropical conditions and capable of producing a respectable 

amount of eggs and meat is a crossbreeding program 

between indigenous and foreign breeds (Duangjinda et al., 

2017; Abd El-Hack et al., 2018).  

The introduction of genetics from high-temperature 

tolerant strains into grandparental stock is a useful 

technique for speeding up the genetic advancement of 

commercial strains that can withstand heat stress. In 

chickens, heat-tolerant genes such as dwarfism (Vandana 

et al., 2021), naked-neck (Desta, 2021), slow/rapid 

feathering (Wells et al., 2012), and frizzle genes (Fathi et 

al., 2013; 2019), have been extensively studied. In every 

case, the chickens' appearance and performance indicators 

which include body weight gain, body weight, and feed 

conversion ratio (FCR), were influenced by their genes 

(Nawaz et al., 2021). Another downside of temperature 

control is immune inhibition (Goel et al., 2021). When 

exposed to high ambient temperature, differences in the 

levels of several immunological marker genes including 

interleukins (ILs), tumor necrosis factors (TNF), and toll-

like receptors (TLRs) had a more pronounced increase in 

the spleen and intestine of chicks (Varasteh et al., 2015; 

Moraes et al., 2019). 

The response of prokaryotic and eukaryotic cells to 

potentially harmful stimulations like heat stress induces 

the synthesis of stress proteins which are referred to as 

heat shock proteins (Efeoğlu, 2009). Many strategies, 

including the development of thermotolerance, 

modification of apoptotic and anti-apoptotic signaling 

pathways, and control of cellular redox conditions, are 

used by heat-shock proteins to provide protection against 

heat stress to cells (Shehaha et al., 2020). The HSP70 and 

HSP90 relate to families of HSP that are around 70 and 90 

kilo Daltons, respectively (Datta et al., 2017). The HSP70 

gene is thought to protect the body from the harmful 

consequences of oxidative stress (Xie et al., 2015), 
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whereas HSP90 engages with client proteins during the 

last stages of folding and changes their shape (Kumbhar et 

al., 2018). The HSP70 is a chaperone polypeptide that 

successfully protects a variety of proteins and cell 

components from stress (Habashy et al., 2017; Perin et al., 

2021). In chickens, Cedraz et al. (2017) found a nucleotide 

polymorphism in the coding area of HSP70. Hyperthermia 

causes oxidative stress and promotes the formation of 

ROS, resulting in the stimulation of HSP70 expression 

(Robert et al. 2017). 

 

Acid-base balance 

As the ambient temperature rises, birds must release 

heat through panting as thermoregulation is difficult 

(Wasti et al., 2020). Panting is a behavior in which 

chickens open their beaks to increase their rate of 

breathing such that the respiratory tract will provide the 

evaporative cooling effect (Park and Kim, 2016). When 

panting occurs, CO2 is excreted faster than it is produced 

by the cells, causing the blood's regular bicarbonate buffer 

system to be disrupted. Carbonic acids (H2CO3) and 

hydrogen ions (H
+
) concentrations decrease when CO2 

levels are reduced (Hamm et al., 2015). On the other hand, 

the concentration of H2CO3 is raised leading to an increase 

in the blood pH, and the blood becomes alkaline. To cope 

with this situation and maintain a normal blood pH, 

chickens will begin to expel more H2CO3 and retain H
+
 

from the kidneys (Saeed et al., 2019). The increased H
+
 

disrupts the acid-base balance, resulting in respiratory 

alkalosis and metabolic acidosis, as well as, a reduction in 

poultry production (Zaboli et al., 2017). 

 

Suppressed immune-competence 

Chickens pant to expel heat and reduce body 

temperature, but they frequently experience instabilities in 

their overall energy balance because of insufficient feed 

consumption under heat stress (Hirakawa et al, 2020). In 

broilers, the weights of the main organs such as the liver 

and pectoral muscle do not improve as expected under the 

heat stress situation, in addition to impairment of broiler 

growth performance (Piestun et al., 2017; Hirakawa et al., 

2020; Tang et al., 2022). Decreased humoral immunity is 

one of the most common forms of immunodeficiency in 

heat-stressed chickens, which might increase the risks of 

secondary infections that restrict vaccination efficacy 

(Lara and Rostagno, 2013). 

Bursa of Fabricius is a fundamental immunological 

tissue unique to birds that are connected to the cloaca and 

it is necessary for B cell development and antibody 

competence diversification brought on by gene conversion 

and V(D)J recombination that causes B cell exportation to 

the lower limbs (Ratcliffe et al., 2014; Monson et al., 

2018). Continuing heat stress accelerates the rate of the 

bursa of Fabricius atrophy and adds to the atrophy of the 

other immune components in hens intensively selected for 

muscle yield and growth (Jahanian and Rasouli, 2015; 

Campbell et al., 2019). Reduced intestinal integrity, which 

increases exposure to pathogens and antigenic compounds 

such as lipopolysaccharides (LPS), or systemic stress 

responses such as circulatory cytokines and acute-phase 

proteins, could affect the bursa of Fabricius during heat 

stress (Nochi et al., 2018). These factors influence the 

formation, survival, and motility of the bursa of Fabricius 

(Calefi et al., 2016). 

The hypothalamic-pituitary-adrenal and sympathetic 

adrenal medullar axis are the main mechanisms by which 

the body's immune response can be altered (Herman et al., 

2016; Goel et al., 2021). Neuroendocrine products of both 

the hypothalamic-pituitary-adrenal and sympathetic 

adrenal medulla axes including cortisol and 

catecholamines have been shown to have receptors on 

monocytes, lymphocytes, and granulocytes, which might 

affect proliferation, cytokine production, cellular 

trafficking, cytolytic activity, and antibody production 

(Bohler et al., 2021). Heat stress affects the microbiome's 

makeup and abundance in addition to causing oxidative 

stress in the gut epithelium, which impairs permeability 

and increases susceptibility to infection and inflammation 

(Cao et al., 2021). 

It has been shown that broilers that have been 

exposed to heat stress had decreased concentrations of free 

circulating antibodies and specific IgG and IgM, along 

with lower levels of general and humoral reactivity (Van 

Goor et al., 2017). The weights of the bursa, thymus, liver, 

and spleen were also observed to be drastically lowered. 

Similarly, Cantet et al. (2021) reported reduced bursa 

weight and lymphocyte numbers in the medulla and the 

cortex regions of the bursa in broilers exposed to heat 

stress. Faud et al. (2016) also reported that heat stress was 

associated with a decrease in spleen and thymus size in 

laying chickens. Heat stress has also been shown in recent 

research to change the number of circulating cells (Santos 

et al., 2015). Due to lower quantities of circulatory 

lymphocytes and greater concentrations of heterophils, 

heat stress leads to a significant increase in the heterophil: 

lymphocyte ratio which is an indication of chronic stress 

(Santos et al., 2015; McGregor et al., 2016). Consequent 

to this, communicable and infectious poultry diseases such 

as Newcastle and infectious bursal disease become more 

prevalent in tropical environments throughout the summer 
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(Badruzzaman et al., 2015; Saelao et al., 2021). In another 

study, Hirakawa et al. (2020) reported lowered levels of 

antibodies in heat-stressed birds (Hirakawa et al., 2020). 

 

Neuroendocrine changes 

During heat stress, the neuroendocrine system is 

critical for the maintenance of homeostasis and proper 

physiological functioning in poultry (Jessop et al., 2016). 

The sympathetic nerves detect a rise in ambient 

temperature and send an impulse to the adrenal medulla 

(Kumari and Nath, 2018), which enhances catecholamine 

secretion in response to stress (Ruuskanen et al., 2021), 

resulting in elevated blood glucose levels, exhaustion of 

liver glycogen, loss of muscle glycogen, accelerated 

respiration rate, peripheral blood vessel vasodilation, and 

heightened neurological responsiveness (Kumari and 

Nath, 2018; Beckford et al., 2020). In response to stress, 

the hypothalamus releases a corticotrophin-releasing 

hormone (CRH), which induces the pituitary to release 

adrenocorticotrophic hormone (ACTH, Wasti et al., 2020). 

Corticosteroids are produced and released by the adrenal 

glands in response to ACTH (Souza et al., 2016). 

Corticosteroids increase plasma glucose levels by 

stimulating gluconeogenesis (Kumari and Nath, 2018). 

The thyroid thyroxine and hormones triiodothyronine are 

also crucial in maintaining a consistent metabolic rate by 

playing a pivotal role in digestion, and heart and muscle 

function (Cioff et al., 2013; Wasti et al., 2020).  

 

HEAT STRESS MITIGATION STRATEGIES 

 

The strategies to combat heat stress are categorized 

broadly as genetic approach, managerial practices, and 

nutritional manipulation. 

 

A genetic approach to mitigate heat stress 

Current developments in genetics and biotechnology 

may pave the way for the investigation of changes to the 

chicken gene to assist reduce heat stress (Cedraz et al., 

2017). The increased metabolic rate of improved broiler 

lines makes them more sensitive to heat stress. Therefore, 

improving the production qualities of these breeds in hot 

and arid environments may require creating poultry lines 

that incorporate some of the genes that reduce heat stress 

(Wasti et al., 2020). 

A single dominant autosomal gene called "naked 

neck" enables chicken necks to have less plumage, which 

helps the neck to dissipate heat (Tóth et al., 2021). In 

heterozygous necked neck (Na/na) and homozygous 

necked neck (Na/Na), the naked neck gene reduces the 

neck plumage cover by 20% and 40%, respectively, in 

comparison to normal siblings (na/na, Rajkumar et al., 

2010). In broilers, the Na gene is associated with an 

increase in body weight and breast muscle, a decrease in 

abdominal fat, and an increase in body temperature (Wang 

et al., 2018). It was found that the heterophil to 

lymphocyte (H/L) ratio and total plasma cholesterol levels 

of the naked-necked chickens were much lower 

throughout the hot season compared to normal chickens 

(Wasti et al., 2020). Under high temperatures, laying hens 

with the bare neck gene also demonstrated improvements 

in egg weight, number, and quality (Azhar et al., 2019). 

These experiments show that it is possible to use these 

genes to create a breed of chicken that can withstand heat 

stress. 

The frizzle (F) gene enables the feather's edge to 

curve, which decreases the feather's weight, enhances heat 

radiation from the body, and improves the feather's ability 

to act as an insulator (Nawaz et al., 2021). Relative to 

heterozygous carriers and regular feathered hens, laying 

hens with the homozygous frizzle gene had increased egg 

production and quality features by enhancing the extent of 

heat dissipation (Kumari and Nath, 2018). Except for 

sexual development under heat stress, there is a positive 

interaction between the feathering genotype (FF) and 

ambient temperature for all reproductive variables, 

including egg production, hatchability, and chick 

production (Dong et al., 2018). 

In poultry, a sex-linked recessive gene called the 

dwarf gene (dw) causes homozygous females and males to 

weigh about 30% and 40% less than normal, respectively 

(Zerjal et al., 2013). The benefit of the dw gene in heat-

stressed laying hens has been the subject of some debate 

(Wasti et al., 2020). However, Fathi et al. (2022) 

recommended the development and commercialization of 

frizzled and naked-necked, and dwarf genes in poultry. 

 

Managerial practices 

Housing  

In the tropics, poultry houses are predominantly 

naturally ventilated open-sided (Alchalabi, 2013). With 

rising air velocity, heat loss via radiation and convection 

can increase significantly (Saleeva et al., 2019; Elbaz et 

al., 2021). Therefore, it is best to allow natural airflow 

from the north and south sides while also shielding birds 

from direct sunlight throughout the day; thus, the shed's 

longitudinal direction should be from east to west (Oloyo 

and Ojerinde, 2019). To maintain their internal 

temperature, poultry houses should be designed with 

optimal insulation (Scanes, 2015). 
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The roof of the poultry shed should be at a 45
o 

angle 

which will be able to maximize the distance of the poultry 

from the heat accumulated under the roof (Oloyo and 

Ojerinde, 2019). Furthermore, water sprinkling can keep 

the roof cool at high temperatures (Saeed et al., 2019). The 

heat that is gained or lost from the building is significantly 

influenced by the size, pitch, the roof's color, reflectivity, 

and direction, as well as, the structure's ventilation system 

(Wang et al., 2018). According to Saleeva et al. (2019), 

the reflectivity of the roof can be increased by adding an 

aluminum roof or painting it with metallic zinc. 

Evaporative cooling technologies with cooling pads and 

sprinklers inside the chicken house can be used in farms 

with extreme outside temperatures and low relative 

humidity (Saeed et al., 2019). Glass wool is currently used 

as an insulating material in the ceiling of environmentally 

controlled chicken houses (Alchalabi, 2013). 

Stocking density is another factor that contributes to 

heat stress. A study by Moreki et al. (2020) in Botswana 

showed that the stocking density of 10-12 birds/m
2
 was 

ideal for open-sided poultry sheds in summer. The authors 

concluded that broiler chicken growth performance was 

negatively impacted by stock densities of more than 12 

birds/m
2
. In another study, Gholami et al. (2020) reared 

broilers at four different stocking densities (10, 15, 17, and 

20 birds/m
2
) under hot and dry conditions and observed 

that the stocking density of 10 birds/m
2
 resulted in lower 

FCR, higher body weights, weight gains, and feed intake 

compared to those reared at 15, 17 and 20 birds/m
2
. The 

higher metabolic rate of chickens during the summer 

increases heat generation inside the poultry house and 

slows heat loss during hot and humid weather giving rise 

to an increase in the poultry house's total temperature 

(Nilsson et al., 2016; Donald, 2018). 

The use of corrugated iron sheets and walls which 

are painted white to reflect heat is encouraged in sub-

tropical and tropical regions (Oloyo and Ojerinde, 2019). 

Furthermore, grass can be used as a roofing material 

which can also serve as an insulation material. Sidewalls 

should have roll-down reinforced curtains that can be 

adjusted for use in cold weather and at night (Bhadauria, 

2017). A sidewall's height should be between 25 and 70 

cm high to allow natural airflow during the hot period as 

side wall curtains will be rolled down (Oloyo and 

Ojerinde, 2019). The open space between the sidewall and 

the roof gable will be closed with a 25 mm wire mesh 

(Alchalabi, 2013). However, as technology progresses, the 

use of a closed housing system for the intensification of 

agricultural operations has increased significantly 

(Donald, 2018). Climate-controlled housing systems (also 

referred to as closed buildings) with exhaust fans, air 

conditioning, cooling pads, and cool perches are beneficial 

in assisting chickens in dealing with the negative 

consequences of heat stress (Bhadauria, 2017). Closed 

buildings, on the other hand, are costly to construct and 

maintain (Glatz and Pym, 2013). 

 

Feeding strategies 

Only feeding methods can lessen heat exhaustion if 

the animal generates less heat or dissipates heat from the 

body through radiation during tunnel ventilation, where air 

velocity is higher. Lower heat production can be realized 

by a reduced heat increment, catabolism of fewer nutrients 

above requirements, or more efficient nutrient digestion 

(Barrett et al., 2019). Broiler chickens compared to laying 

hens appear to need more attention to feeding schedules. 

Many of the difficulties related to heat exhaustion in 

broilers can be alleviated simply by feeding at the right 

time (Syafwan et al., 2011; Kennedy et al., 2022). To 

address heat stress, coarser meals, diurnal feeding patterns, 

self-selection procedures, and wet feeding are all viable 

options. The feed should be well processed into mash, 

crumb, or pellets, and supplementary feeders should be 

available on hot days to increase appetite (Rahman and 

Hidayat, 2020). 

The use of low-beam lights may also minimize 

activity, thus lessening the heat burden on the birds 

(Bhadauria et al., 2016). Lighting schedules are utilized 

for broiler chickens to control feed intake (Wu et al., 

2022) and provide access to feed and water, especially 

during the cooler parts of the day (De Oliveira and Lara, 

2016). The length of the photoperiod can be altered as an 

alternate strategy to enhance the well-being, immune 

response (Riber, 2015), and ultimately the performance of 

birds that are under heat stress (Parvin et al., 2014). Using 

low-intensity lighting when the temperature is high (for 

example 180 Lux) can prevent broilers from moving 

around and agitating, which can lead to them to be heavier 

(Mousa-Balabel et al., 2021; Wu et al., 2022). Mousa-

Babel et al. (2021) compared the performance of broiler 

chickens reared at low-beam blue light intensity (5 Lux), 

medium blue light (20 Lux), and high blue light intensity 

(320 Lux) and found that broiler chickens raised under 

low-beam blue light intensity had significantly higher 

body weight, body weight gain, antibody titers against the 

Newcastle disease virus, and foot pad dermatitis compared 

to their counterparts in high blue light intensity. In 

addition, chickens on low-beam blue light intensity had 

lower activity levels and heterophil/lymphocyte ratios, and 

FCR. 
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Feeding time is a significant component in reducing 

the effects of heat stress on feed intake and utilization 

(Farghly et al., 2018, Kennedy et al., 2022). Therefore, 

during the time of low temperatures, for example, in the 

early hours of the day and late evening, a significant 

portion of the feed should be supplied to the poultry, with 

the remaining amount available ad libitum. According to 

Daghir (2009), chickens that are feed-starved produce less 

heat than those that are fed; hence removing feed on hot 

days has some ameliorating benefits on performance. 

Farghly et al. (2018) reported that feed withdrawal 

involves alterations in intestinal morphology and depletion 

of intestinal mucosa due to fasting which may damage the 

intestinal cells. 

A study by Zaboli et al. (2019) reported that a rise in 

the room temperature from 21.1°C to 32.2°C leads to a 

decline in feed intake of around 9.5% /bird/day from 1 to 6 

weeks of age. In another study, He et al. (2019) reported 

that a rise in environmental temperature from 32.2°C to 

37.8°C results in a 9.9% decrease in feed intake per 

bird/day. It is, however, not recommended to allow birds 

to go for a long time without a feed as this will have an 

impact on growth and may increase skin scratches at 

feeding time resulting in downgraded carcasses (Suganya 

et al., 2015; Vandana et al., 2021). 

The form in which the feed is presented to the birds 

affects the consumption of poultry exposed to high 

environmental temperatures. In warmer conditions, 

poultry, particularly broilers, prefer eating larger particles 

(Ranjan et al., 2019; Massuquetto et al., 2020). According 

to Smalling et al. (2019), when broilers are fed pelleted 

feed, the energy required for feeding is reduced by 67%, 

allowing that energy to be channeled toward more 

productive applications. Khalil et al. (2021) reported that 

feeding pellets to laying hens during high ambient 

temperatures contributes to higher feed efficiency, egg 

production, and water intake compared to mash feeding. 

The physical feature of the pellets enables the birds to 

ingest feed with less wasted energy, therefore the pellets' 

quality and durability are extremely important. The FCR 

can be altered by 0.01 points if the pelleted feed contains 

10% fine particles (Ahmed and Abbas, 2013). 

The quantity of coarse particles in droppings is 

adversely correlated to the water in the droppings. The 

higher retention duration of coarse particles inside the 

gastrointestinal tract (GIT) is responsible for this 

association (Smalling et al., 2019; Abdel-Moneim et al., 

2021). In comparison to fine diets, coarse diets can enable 

more retention of water from GIT (Smalling et al., 2019) 

and this may aid to release the heat burden. More heat loss 

by evaporative cooling, on the other hand, emphasizes the 

importance of increased water intake in heat-stressed birds 

(Lara and Rostagno, 2013). Therefore, the provision of 

high-physical-quality feed will minimize energy expended 

and heat generated during feeding (Mir et al., 2018). 

Choice feeding encourages chickens to select a meal 

and reduce the heat burden associated with the metabolic 

process in hot environments. It could also help the 

chickens to better match their nutrient intake to their 

needs. When given a choice of diet, chickens are reported 

to select a variety of food items to meet their nutrient 

needs (Sinha et al., 2018). It has been observed that 

chickens that are choice fed choose feed ingredients with 

lower heat increments to minimize excess heat during the 

harshest times of the day, thus enhancing their heat 

tolerance (Diarra et al., 2014). Suganya et al. (2015) 

reported that choice-fed broilers ingest less protein and 

much more energy at high temperatures than those feeding 

on a complete diet, presumably to limit body heat output 

from protein-high heat increment. Similarly, De Almeida 

et al. (2012) observed that when Japanese quails were kept 

at temperatures ranging from 20 to 35
o
C, they chose to eat 

more calories and less protein when given a choice diet vs. 

a single complete diet. 

Diet management changes, including rehydrating 

feed, have long been known to improve poultry 

performance (Rahman and Hidayat, 2020). Relative to 

broiler chickens consuming dry feed, this technique 

enhances weight gain, feed intake, FCR, and the weight of 

the gut in broilers at ordinary temperatures (Kaldhusdal et 

al., 2016; Rostagno., 2020). In another study, it was 

reported that even though the weight of the digesta across 

the entire digestive system of chickens was lower while 

the feed intake was higher, wet feeding has been 

associated with a quicker rate of passage through the gut 

(Calefi et al., 2016). 

A previous study by Calefi et al. (2014) reported 

advancements in digestive efficiency which were assumed 

to be due to a higher empty weight, a longer gut length, 

and greater gut wall thickness in some areas of the 

digestive tract with wet feeding. Farghly et al. (2018) and 

Kadykalo et al. (2018) observed that wet feeding increased 

the ingesta’s fluidity, possibly indicating a faster digesta 

transit rate. Additionally, a thicker intestinal wall could 

help with digestion. Farghly et al. (2018), compared 

rehydrating to dry feed and found that rehydrating feed 

lowers digesta fluidity to a similar degree and promotes 

pre-digestion and absorption, presumably due to faster 

digestion enzyme penetration into feed particles. This may 

result in increased nutrient digestibility. In addition, 
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external enzyme inclusion in the wet feed may have an 

additional potential influence on absorption, since they 

may promote substrate accessibility for enzymes, hence, 

increasing nutrient absorption (Holtmann et al., 2017). 

Saleh et al. (2021) reported that wet feeding may improve 

performance because it increases dry matter (DM) intake 

at high temperatures. Egg weight and egg production 

could be boosted in this manner under high temperatures. 

Waiz et al. (2016) observed that compared to dry feeding, 

moistening laying hen’s feed at a 1:1 (feed: water) ratio in 

hot environments improves laying performance. High 

performance in hot conditions is predominantly caused by 

an increase in DM intake on wet feed, which enhances the 

intake of micronutrients (Afsharmanesh et al., 2016). 

At high temperatures birds eat less, thus failing to 

meet their nutrient needs (Rath et al., 2015). Therefore, 

heat stress can be alleviated by increasing the nutrient 

density of the diet. During summer, especially for broiler 

hens, adding fat to the diet should be taken into 

consideration to keep their daily energy requirement in 

line with their needs for growth (Diarra and Tabuaciri, 

2014; Teyssier et al., 2022). Due to fat's lower heat 

increment when compared to alternative energy sources 

like carbohydrates or proteins, the inclusion of fat in diets 

for broilers that are under heat stress improves their feed 

intake and performance (Rath et al., 2015; Pursey et al., 

2017). However, to achieve a balanced meal and hence 

optimize utilization, the content of other nutrients, notably 

proteins, must be appropriately adjusted whenever the 

energy density is raised by added fat (Rahman and 

Hidayat, 2020). Heat-stressed chickens have a strong urge 

to reduce feed intake to lower their body temperature 

(Wasti et al., 2020). Low-digestible energy and protein-

rich diets are favorable when heat stress is moderate 

(Lemme et al., 2019). In addition, it was reported that fat 

in the diet increases nutrient utilization by slowing feed 

passage through the GIT (Jha and Mishra, 2021). 

According to a previous study, polyunsaturated fatty 

acid-rich fat sources, such as soybean oil, fish oil, canola 

oil, flaxseed oil, and walnuts must be avoided or be used 

in moderation, indicating that caution must be exercised 

when choosing a fat source to include in a diet (Seifi et al., 

2020). According to Surai et al. (2019), such sources are 

deficient in antioxidants and are vulnerable to oxidative 

rancidity, which results in the degradation of vitamins A 

and E and the taste of poultry meat being altered. 

Moreover, soybean oil has a high concentration of 

polyunsaturated fatty acids that frequently result in the 

creation of excess visceral and breast intramuscular fat, 

which lowers the quality of the carcass (Abdel-Moneim et 

al., 2021). However, if the energy density of the diet is to 

be increased, the levels of all nutrients must be adjusted to 

maintain optimal intake (Pawar et al., 2016). 

It was previously noted, poultry limit feed 

consumption in hot weather which results in nutrient 

deficiencies (Teyssier et al., 2022). Due to a reduction in 

consumption, there is a decrease in the intake of essential 

nutrients, such as protein, essential amino acids, minerals, 

and vitamins (Rath et al., 2015). In this case, it is 

preferable to improve and balance vital amino acids 

because increasing protein levels can increase heat 

production during protein metabolism (Teyssier et al., 

2022). Bird performance is unaffected even if the diet is 

lacking in protein but contains a balanced amino acid 

content (Kumar et al., 2016). If protein levels must be 

increased, vegetable-derived proteins such as soy, sesame, 

and sunflower are excellent choices since animal-source 

proteins will produce more heat during metabolism (Tari 

et al., 2020). Vegetable proteins are rich in arginine, an 

essential amino acid required during heat stress. Dao et al. 

(2021) reported that the role of arginine aids in protein 

synthesis and immunity. At the macrophage level, arginine 

is transformed into nitric oxide (Rath et al., 2014), a 

mediating component in vasodilation and increased 

peripheral blood flow which are significant 

thermoregulatory responses to heat stress (Liu et al., 

2019). 

When feed intake is lowered due to heat stress, it 

was normally advised that dietary protein levels be raised 

to maintain a steady protein intake (Liu et al., 2019). 

However, studies conducted over time suggest that birds 

under heat stress may not always require more protein 

(Suganya et al., 2015). A recent study reported that 

feeding broilers high-protein diets at high environmental 

temperatures result in their growth being inhibited (Qaid 

and AlGaradi, 2021). It was indicated that hens' growth 

performance at 3 to 6 weeks of age under hot temperatures 

of 32
o
C was not improved by raising protein content from 

17 to 23% (Awad et al., 2019). This was primarily caused 

by the increased nitrogen excretion and reduced efficacy 

of the high-protein diet compared to the low-protein diet 

(Kidd et al., 2021). Previous investigations demonstrated 

that higher body heat generation due to increased feed 

intake contributed to poor performance (Diarra et al., 

2014). The mentioned authors reported that birds on low-

protein diets consumed more protein, possibly due to a 

physiological shift that allows them to use the protein 

more efficiently when it is scarce. On the other hand, 

prolonged heat-stress exposure affects the reaction of 

poultry to dietary protein levels, therefore lowering crude 
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protein levels as a strategy for mitigating heat stress is not 

justified (Bohler et al., 2021). 

In a separate study, it was found that using protein 

sources that provide the appropriate amounts and 

proportions of methionine and lysine can lower 2-4% of 

dietary protein without compromising weight increase or 

feed conversion (Attia et al., 2020). It was reported that 

adding 0.05% methionine to water boosted feed efficiency 

considerably in heat-stressed chickens (Cadirci and 

Koncagul, 2014). Any loss in amino acids will result in 

their insufficiency, making protein non-ideal irrespective 

of the protein amount (Kumar et al., 2016). Therefore, 

supplementing low-protein meals with essential amino 

acids has been shown to help heat-stressed chickens 

perform better (Lemme et al., 2019). Heat intensity and 

duration, breed, age of birds, the quantity of amino acid 

supplementation, and diet composition could all influence 

how heat-stressed chicken responds to low-protein diets. 

Under hyper thermoneutral conditions compared to 

thermoneutral conditions, the total sulfur amino acids 

(TSAA) demand would be higher (Babazadeh and 

Ahmadi, 2022). In addition, it takes more TSAA to attain 

optimal growth performance when broiler chicks are 

raised at high temperatures (Del Vesco et al., 2013; Zarghi 

et al., 2020). When adding methionine supplements, 

factors such as age and production parameters must be 

considered to mitigate the harmful effects of heat stress 

(de Freitas Dionizio et al., 2021). Supplementing with 

methionine is also useful for lowering immunological 

stress and can change how the immune system responds 

(Pacheco et al., 2018). 

 

Feed as a source of calcium carbonate 

Calcium is supplied to commercial breeders in many 

ways which include using grower diets that contain 0.9 to 

1.0% calcium supplemented with up to 5% egg production 

or using classical pre-breeder diets that allow for the 

development of greater medullary bone reservoirs without 

using the diets that contain 2-2.5% calcium (Bryden et al., 

2021). Heat stress causes poultry to consume less than 3.5 

grams of calcium each day (Abbas et al., 2021). In 

addition, heat stress decreases the production of calbindin, 

a calcium-binding protein required for calcium absorption 

in the intestine (Ebeid et al., 2012). Ranjan et al., (2019) it 

is reported that feeding laying hens in the evening 

improves their laying rate and eggshell quality by 

increasing calcium intake. A decrease in egg production is 

directly linked to a reduction in calcium intake (Bryden et 

al., 2021). 

During heat stress, reduced calcium intake and poor 

absorption result in lower plasma calcium levels, leading 

to less calcium being available for eggshell formation in 

laying hens. This results in lower egg output, smaller eggs, 

or thin-shelled eggs, and poor skeletal development, 

causing economic losses to producers (Allahverdi et al., 

2013; Ventura and Matias da Silva, 2019). As poultry's 

DM intake is already low due to heat stress, adding large 

amounts of calcium supplements may not be viable. 

However, a larger particle-size calcium source including 

limestone or oyster shells is retained in the gizzard for a 

longer period and is released slowly into the duodenum for 

eventual absorption into circulation (Mir et al., 2018).  

 

Electrolytes and vitamins 

The main causes of poor performance in heat-

stressed chickens have been identified by the alteration of 

the acid-base balance and lowered feed intake (Sugiharto 

et al., 2017). The minerals potassium (K), sodium (Na), 

and chlorine (Cl) are essential for maintaining the acid-

base balance of bodily fluids (Popoola et al., 2019). As a 

result, adding minerals such as ammonium chloride 

(NH4Cl), sodium bicarbonate (NaHCO3), sodium chloride 

(NaCl), potassium chloride (KCl), and potassium sulfate 

(K2SO4) to the diet or drinking water of heat-stressed 

chickens will assist to mitigate the negative effects of heat 

stress (Diarra and Tabuaciri, 2014; Pawar et al., 2016). 

At high ambient temperatures water intake increases 

while feed intake decreases. Chickens drink four times 

more at 38°C compared to 21°C (Orakpoghenor et al., 

2020), indicating that water must be available all the time 

during this period. Increased water intake, which improves 

heat dissipation and cools down the body provides relief 

from the detrimental effects of heat exhaustion by 

supplementing the drinking water with Na+, K+, and Cl
-
 

salts (Gamba et al., 2015). Bryden et al. (2021) found that 

heat-stressed laying hens treated with 0.5% hydrochloric 

acid in drinking water had significant gains in egg 

production and egg quality. Gamba et al. (2015) observed 

that excreta and litter moisture rise due to increased water 

intake caused by elevated Na
+
 and K

+
 levels. 

In another study, Cherian (2015) found that 

supplementing drinking water with vitamins A, D, E, and 

B complex increased broiler performance and immune 

function. Additionally, supplementation of vitamin C 

(ascorbic acid) has been found to improve performance 

through improved feed consumption and nutritional intake 

in heat-stressed birds. Furthermore, Asensio et al. (2020) 

observed that supplementing broilers with ascorbic acid 

enhanced the weight and protein content of the carcass 
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while lowering carcass fat content. Daghir (2009) 

recommended 1 g of vitamin C per liter of drinking water 

and 20 mg per liter of water for broilers and laying hens, 

respectively. A study by Wang et al. (2011) in laying hens 

found that vitamin C does not affect egg weight or egg 

production. However, Skřivan et al. (2013) reported that 

50 and 100 mg/kg vitamin C supplementation significantly 

increased fertility and hen-day egg production of broiler 

breeders. 

Since poultry cannot synthesize vitamin E, they must 

be supplemented (Attia et al., 2016). The hormone levels 

of catecholamine and corticosterone rise in response to 

stress, particularly heat stress, and lipid peroxidation in 

cell membranes begins (Abd El-Hack et al., 2018). 

Vitamin E has also been proven to safeguard 

macrophages, lymphocytes, and plasma cells from 

oxidative stress while also enhancing their viability, 

propagation, and functionality (Shakeri et al., 2020). 

Therefore, supplementing with vitamin E in the diet during 

times of stress improves the immunological response of 

poultry. According to new research, adding vitamin E at a 

dosage of 250 mg/kg to broiler chickens is a viable 

protective approach for reducing the severity of heat stress 

and it may result in optimal performance and enhanced 

meat quality (Saeed et al., 2019). For layers, however, the 

dosage is 125-250 mg/kg has been found to result in an 

improved immunological response, egg production, and 

feed utilization (Shakeri et al., 2020). Heat stress raises the 

levels of malondialdehyde in the blood and liver, whereas 

vitamin E inhibits the formation of malondialdehyde in the 

liver by preventing lipid peroxidation and cell damage 

(McDowell, 2012), resulting in improved chicken 

performance. 

 

Supply of cool water 

Water consumption and balance are linked to 

evaporative heat dissipation and calories dissipated every 

breath (Chikumba and Chimonyo, 2013; Abdel-Moneim et 

al., 2021). Reduced water temperature encourages water 

consumption, which increases evaporative cooling and 

heat dissipation for each breath (McCreery, 2015). 

Furthermore, a 20% water consumption increase can result 

in a 30% increase in heat loss in each breath, with a 

corresponding performance improvement (Abdel-Moneim 

et al., 2021). 

Water temperature, height, and the shape of drinkers 

affect poultry performance during heat stress 

(Orakpoghenor et al., 2020). Water consumption is high in 

nipple drinkers that are slightly above chick eye than in 

lower nipple drinkers as chickens find it difficult to bend 

down and drink from lower nipples (Quilumba et al., 

2015; Ranjan et al., 2019). Daghir (2009) recommended 

the use of wider and deeper drinkers during heat stress as 

they will permit immersion of not only the beak but the 

whole face and help dissipate more heat. Cool water at 10-

12
o
C is helpful to poultry, therefore, there is a need to 

protect water tanks and pipes from the direct sun because 

birds will not drink warm water (Park et al., 2015). Poultry 

should always have access to cool, clean water that is 

below 25
o
C and has ice in it so that their body 

temperatures can remain steady during times of heat stress 

(Park et al., 2015). 

 

Use of phytochemicals in mitigating heat stress 

To reduce heat stress in poultry, various 

phytochemical supplements have been added to the diet. 

 

Resveratrol 

Natural bioactive polyphenols called resveratrol are 

mostly found in peanuts, grapes, turmeric, and berries 

(Saeed et al., 2017). Resveratrol supplementation (400 

mg/kg of feed) has been found in previous studies to boost 

the antioxidant capacity in broilers under heat stress (Hu et 

al., 2019). In yellow-feather broilers under heat stress, 

resveratrol supplementation at 300 or 500 mg/kg of feed 

increased average daily growth, decreased rectal 

temperature, and decreased the levels of 

adrenocorticotropin hormone, malondialdehyde (MDA), 

corticosterone, and cholesterol (He et al., 2019). 

Resveratrol supplementation of 200 mg/kg of feed 

increased egg production in laying hens, whereas 

resveratrol supplementation of 400 mg/kg of feed 

decreased total blood cholesterol and triglycerides, 

decreased egg cholesterol content, increased antioxidant 

activity, and increased egg sensory scores (Zhang et al., 

2017). 

 

Lycopene 

The carotenoid lycopene, which is mostly present in 

tomatoes and tomato-based products, is known to increase 

the synthesis of antioxidant enzymes by activating the 

DNA's antioxidant response element (Wasti et al., 2020). 

Heat-stressed broilers' total feed intake, weight gain, and 

FCR were all improved when lycopene (200 or 400 mg/kg 

of feed) was added (Sahin et al., 2016). Lycopene has been 

reported to increase the levels of antioxidant enzymes, 

such as superoxide dismutase (SOD) and glutathione 

peroxidase (GSH-Px) in broilers (Arain et al., 2018). 

Lycopene administration increased vitamin levels, 
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improved oxidative stability, and the yolk color of eggs in 

laying hens (Sahin et al., 2016; Arain et al., 2018). 

 

Epigallocatechin gallate 

Green tea extract contains the polyphenol 

epigallocatechin gallate (EGCG), which has strong anti-

inflammatory and antioxidant effects (Hu et al., 2019). 

When Luo et al. (2018) fed heat-stressed broiler birds at 

three EGCG dosages (0, 300, and 600 mg/kg), they 

observed a linear increase in feed intake, body weight, and 

levels of blood total protein, glucose, and alkaline 

phosphatase activity. In a related study, Xue et al. (2017) 

found that feeding EGCG improved body weight and 

antioxidant enzyme levels (catalase, GSH-Px, and SOD) in 

heat-stressed broiler chicks' liver and serum. 

 

Curcumin 

The main polyphenols extracted from turmeric are 

called curcumin, which has anti-inflammatory and 

antioxidant properties (Attia et al., 2017; Wasti et al., 

2020). Even though curcumin is easily absorbed by 

animals, more recent studies have concentrated on its 

potential application as a compound to reduce heat stress 

in chickens (Wasti et al., 2020). It was reported that 

adding curcumin to feed at a rate of 100 mg/kg 

significantly increased broiler body weight during heat 

stress (Zhang et al., 2017). Furthermore, the inclusion of 

150 mg/kg of curcumin in the diet of laying hens enhanced 

egg quality, laying efficiency, antioxidant enzyme activity, 

and immunological response to heat stress (Liu et al., 

2020). 

 

Mitigation of heat stress by use of probiotics and 

betaine 

Betaine is widely distributed in plants, animals, 

microbes, and its rich food sources include fish, spinach, 

and wheat bran (Saeed et al., 2017). Betaine plays an 

essential role in sustaining the basic functions of poultry, 

including osmoregulation, fat distribution, methionine 

sparing, immunity, and the bird's ability to withstand heat 

stress (Attia et al., 2016; Saeed et al., 2019). The 

performance of chickens kept under heat stress can be 

greatly improved by including betaine in their diets (Hao 

et al., 2017; Saeed et al., 2017). In addition, betaine also 

functions as a methyl donor, which enables feed cost 

reductions by substituting methionine and choline 

supplements (Gholami et al., 2015). Betaine supports a 

variety of intestinal bacteria in their defense against 

osmotic changes, improving microbial fermentation 

activity (Abd El-Ghany and Babazadeh, 2022). 

The term "probiotics" refers to feed additives that 

contain live beneficial microorganisms such as 

Bifidobacterium, Streptococci, and Lactobacillus, yeast 

cultures with Saccharomyces and candida strains, and 

fungi (Aspergillus awamori, A. niger, and A. oryza), which 

may improve poultry performance, intestinal microbiota, 

and immune system (Abd El-Hack, et al., 2018;  El-

Moneim et al., 2020). Probiotics have received a lot of 

attention lately for reducing the oxidative damage brought 

about by heat stress in chickens (Ahmad et al., 2022). It 

has been shown that the addition of probiotics to the diet 

of broilers increased their growth performance, FCR, and 

immunological response (Wang et al., 2018). 

A symbiotic relationship occurs when prebiotics and 

probiotics are combined to have a positive effect on poultry 

raised in hot environments (Lara and Rostagno, 2013). It 

has been suggested that incorporating synbiotics in the diet 

may benefit chickens kept in areas that experience high 

levels of heat stress by minimizing the negative effects of 

heat and possibly improving their welfare and performance 

(Mohammed et al., 2018). Probiotic supplements have been 

shown to have favorable benefits on the health and 

productivity of chickens in tropical climates (Ahossi et al., 

2016; Deraz, 2018). It was reported that the performance, 

intestinal morphology, and immunological response of heat-

stressed chickens were all improved by consuming mannan-

oligosaccharides, prebiotics, and a probiotic combination 

(Jahromi et al., 2015). 

 

CONCLUSION 

 

Heat stress has a negative impact on the health and 

productivity of poultry and is a significant challenge in 

poultry production in the tropics. Heat stress results from a 

combination of many factors including high ambient 

temperature, radiant heat, humidity, and airspeed. Due to 

heat stress many behavioral, neuroendocrinal, and 

physiological changes occur. Gene screening for higher 

growth rates to meet the ever-increasing food requirement 

has made poultry susceptible to heat stress. In birds raised 

for egg and meat production, an increase in the ambient 

temperature induces decreases in body weight gain, feed 

intake, eggshell weight, higher FCR, and increases in body 

temperature. These negative effects can be addressed by 

strategic managerial enhancements. Several approaches 

are used worldwide to combat the severe impacts of heat 

stress, including the selection of rearing systems with 

better ventilation, suitable housing conditions, and 

recommended correct stocking densities, all of which are 

crucial for enhancing performance at high temperatures. 
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Given that there is no single strategy for heat stress, a 

variety of strategies will help to reduce it. Further research 

on new innovative strategies which include utilizing heat 

tolerance genes and selecting genotypes with higher heat 

tolerance using genetic markers should be carried out. 
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