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ABSTRACT
Understanding the spatial and temporal distribution of Bovine anaplasmosis is crucial for 
identifying areas of high prevalence for targeted disease control. This research was aimed at 
modelling and mapping the B. anaplasmosis potential distribution, and identify hotspots as 
well as significant variables explaining the occurrence of the disease. The Getis Ord Gi* statistic 
for Hotspot analysis was used as well as MaxEnt ecological niche modelling. The effects of 
time, land-use, and agro-ecological regions on B. anaplasmosis occurrence were tested using 
Analysis of Variance (ANOVA). Results showed that several districts in Zimbabwe are suitable 
for the occurence of the disease for example Binga, Seke, Buhera, Kwekwe, Gweru, Mhondoro, 
Chegutu, Sanyati, and in the North: Mbire, Muzarabani, Mt Darwin, Shamva, Bindura, Zvimba 
and Makonde. Morbidity and mortality hotspots were detected in Gokwe-south, Kwekwe, and 
Chirumhanzu districts. Binga, Gokwe-south, Gutu, Hurungwe, Mazoe, Nkayi, Shamva, and 
Kwekwe districts also experienced high disease incidences. Temperature seasonality, 
precipitation seasonality, mean diurnal range, and isothermality were the most important 
variables in explaining 93% of B. anaplasmosis distribution. Unlike land-use and agro-ecological 
regions, time (months) had a significant effect on B. anaplasmosis occurrence with July and 
September having significantly (p < 0.05) higher cases and deaths than the rest of the months. 
The results of this study provide insights into the management strategies and control of B. 
anaplasmosis in Zimbabwe. It is thus concluded that geo-spatial techniques, combined with 
ecological niche modelling can provide useful insights into disease prevalence and distribution 
and hence can contribute to effective management and control of B. anaplasmosis in 
Zimbabwe.

1.  Introduction

Tick-borne diseases (TBDs) are common in livestock, 
especially in poor farming communities characterized 
by ineffective management systems (Ostfeld and 
Brunner 2015). The most prevalent diseases are ana-
plasmosis (Gall-sickness), babesiosis (Red-water), 
ehrlichiosis (formerly cowdriosis: heartwater), and 
theileriosis (January disease) (De Waal 2000). These 
diseases affect ~80% of the world’s cattle population 
and cost between $13.9 and $18 billion per year in 
acaricides and vaccine purchases and deaths 
(Demessie and Derso 2015). TBDs are a major con-
cern in Zimbabwe where cattle husbandry is one of 
the most common agricultural practices (Chaminuka 
et  al. 2014). According to the country’s Central 
Veterinary Statistics of 2015, TBDs accounted for 60% 
of all livestock deaths in Zimbabwe. Cattle are a 
perennial source of income, providing beef and milk 

(Guerrini et  al. 2019). In addition, cattle provide 
draught power for communal farmers; manure; trans-
port; and are an important component of dowry 
payment (Chaminuka et  al. 2014; Sungirai et  al. 
2016). However, TBDs cause high cattle morbidity 
and mortality, reduced growth rate, reduced milk 
production, and low fertility in cattle (Rashid et  al. 
2019; Shekede et  al. 2021). Therefore, their occur-
rence impacts negatively on national agricultural 
production as well as hindering access to profitable 
foreign beef markets (Guerrini et  al. 2019).

TBDs are mostly found in tropical and subtropical 
regions around the world (Southern Europe, Australia, 
South and Central America, Asia, and Africa) where 
associated tick vectors thrive, with a sporadic distri-
bution in temperate climates (Randolph 2008). Bovine 
anaplasmosis, caused by the rickettsia Anaplasma 
marginale, has a worldwide distribution (Rodríguez 
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et  al. 2009). The rickesttsial parasites A. marginale and 
Anaplasma centrale cause anaplasmosis, a tick-borne 
non-contagious haemolytic disease that affects both 
domestic and wild ruminants (Johnson et  al. 2016). 
These parasites are transmitted biologically by ticks, 
mechanically by biting flies, blood-contaminated 
fomites, and from cow to calf by transplacental trans-
mission (Aubry and Geale 2011). Once the host is 
infected, the parasites cause severe anaemia by 
infecting red blood cells (Johnson et  al. 2016). The 
five tick species that have been reported to transmit 
A. marginale in southern Africa are Rhipicephalus 
decoloratus, Rhipicephalus evertsi evertsi, Rhipicephalus 
microplus, Rhipicephalus simus, and Hyalomma margi-
natum rufipes (De Waal 2000). Compared to other 
TBDs, anaplasmosis remains one of the most serious 
causes of high cattle morbidity and mortality in 
developing countries (Randolph 2008). For example, 
14 countries in Africa reported anaplasmosis out-
breaks to the African Union-Interafrican Bureau for 
Animal Resources in 2011 (AU-IBAR 2011). During the 
same year, 983 outbreaks were recorded involving 
872 deaths with the highest number of outbreaks 
reported by Zimbabwe (533), followed by Zambia 
(100) and Kenya (88) (AU-IBAR 2011). Anaplasmosis is 
also on the list of diseases notifiable to the World 
Organization for Animal Health. Although disease 
eradicating programs have been successfully achieved 
in high income and most middle income countries, 
anaplasmosis remains a major challenge in low 
income countries (Rashid et  al. 2019; Shekede et  al. 
2021). In Zimbabwe, the high mortality rates are 
linked to low dipping frequency, common in commu-
nal areas where farmers rely on government support 
for dipping chemicals (Shekede et  al. 2021).

Although knowledge of the geographic distribu-
tion and suitable habitats of tick species is crucial for 
the management of TBDs, detailed data on species’ 
actual and potential distribution as well as anaplas-
mosis spatial distribution is usually lacking 
(Tesfamariam et  al. 2022) as collecting such data is 
costly and labour-intensive. Furthermore, there is still 
limited knowledge concerning the disease drivers 
owing to the global and continental scales at which 
previous studies were carried out (Buhnerkempe 
et  al. 2014; Hammac et  al. 2014). In contrast, local 
studies have strongly relied on traditional field-based 
surveys which are not only costly but also inefficient 
in describing the precise spatial distribution of the 
disease (Ostfeld and Brunner 2015). For instance, in 
Zimbabwe, traditional mapping methods as used by 
Ndebele et  al. (2007) and Sungirai et  al. (2016) lack 
spatial accuracy, which results in inaccurate mapping 
of disease areal distribution. Advances in geospatial 
technologies and the growing availability of model-
ling approaches have improved disease mapping 
and spatial modelling by identifying specific areas of 
disease occurrence (Yang et  al. 2005; Phillips et  al. 
2006; Beale et  al. 2008; Kumar and Stohlgren 2009; 
Johnson et  al. 2016) thereby offering spatially explicit 
disease management options.

In Zimbabwe, despite the reported widespread 
distribution and severe cattle losses incurred to date, 
effective control of anaplasmosis has not been 
achieved (Nhokwara et  al. 2023). Mapping the spatial 
distribution, including hotspots and coldspots is 
essential for the effective management of the ana-
plasmosis. Moreover, an understanding of the envi-
ronmental conditions suitable for disease prevalence 
in space and time provides the fundamental basis for 
managing the disease (Kumar and Stohlgren 2009; 
Kumar et  al. 2016; Tagwireyi et  al. 2022). 
Understanding the spatial distribution of anaplasmo-
sis is important in identifying areas of high disease 
prevalence which helps in effective disease control 
thereby reducing economic and social losses 
attributed to the disease (Herrmann et  al. 2014; 
Tagwireyi et  al. 2022). Knowledge of disease hotspots 
is important for optimal resource allocation through 
targeted preventive and control strategies to areas 
with the greatest need (Shekede et al. 2021; Shaweno 
et  al. 2021; Ren et  al. 2022). This is vital in countries 
with limited resources, such as Zimbabwe, where 
dipping chemicals are usually insufficient to cater for 
the whole country (Mashoko et  al. 2007). Agriculture 
is the backbone of Zimbabwe’s economy and is the 
main source of income for most Zimbabwe’s subsis-
tence and commercial farmers. In Zimbabwe, the cat-
tle population is estimated to be between 4 and 5 
million (Mashoko et  al. 2007) with 89% of the herd 
found in communal areas (Mavedzenge et  al. 2008). 
However, the cattle herd is declining as a result of 
diseases  such as foot-and-mouth, theileriosis, 
anthrax, heartwater, redwater and B. anaplasmosis 
amongst others (Sungirai et  al. 2016; Nhokwara et  al. 
2023). Therefore, this study aimed at using geospatial 
technologies in conjunction with ecological niche 
modelling to examine the spatial distribution of ana-
plasmosis in Zimbabwe, its hotspots and frequency 
of occurrence by using presence-only data and 
bio-climatic variables.

2.  Materials and methods

2.1.  Study area

The study was conducted in Zimbabwe, a semi-arid 
country located in Southern Africa within the tropics 
at 15°30″ and 22°30″S (latitude) 25°00″ and 33°10″E 
(longitude) (Figure 1). Zimbabwe is a landlocked 
country covering 386,847 km2 of land and 3,910 km2 
of water (Kuri et  al. 2014). Temperature ranges from 
an average low of 15 °C in winter to around 24 °C in 
summer. The climate varies with altitude, with the 
eastern highlands experiencing the lowest mean 
annual temperature of 18 °C while the northern and 
southern low lying areas experience the highest tem-
peratures of around 23 °C (Mupangwa et  al. 2011). 
The climate is characterized by a cool dry season 
from May to August, hot and dry season between 
August and October, and a hot and wet season 
stretching from November to April (Mupangwa et  al. 



VETERINARY QUARTERLY 3

2011). Precipitation averages 750–900 mm in the 
Highveld and 350 mm in the Lowveld (Kuri et  al. 
2014). Elevation is highest in the eastern parts of the 
country (>2500 m above sea level) and lowest in the 
southern and northern parts of the country where it 
is <300 m above sea level. Main land use types vary 
from forest plantations, crop farming to animal hus-
bandry. Table 1 shows that the greater proportion of 
the cattle population is found in drier regions of the 
country, i.e. Region IV (450–650 mm) and V (<450 mm). 
However, the cattle herd is declining as a result of 
diseases like foot-and-mouth, theileriosis, anthrax, 
heartwater, redwater, and B. anaplasmosis amongst 
others (Sungirai et  al. 2016; Nhokwara et  al. 2023).

Movement of tick infested livestock is the main 
driver of TBD spread from one area to another. 
Thus, TBDs are managed through rigorous short-in-
terval dipping, disease surveillance, monitoring and 
reporting as well as strict enforcement of livestock 
movement control regulations (Peter et  al. 1998).

2.2.  Bovine anaplasmosis data

Spatially referenced confirmed B. anaplasmosis cases 
(morbidity) and deaths (mortality) data for the period 
2010–2011 were obtained from the Department of 
Veterinary Services (DVS) within the Ministry of 
Agriculture, Mechanization and Irrigation Development, 
Zimbabwe. Monthly, all district veterinary offices and 
animal health centres submit animal disease reports 
to the provincial veterinary offices where the data is 
collated. The collated disease information from all the 
provinces is then submitted to the Information 
Management Unit (IMU) in the DVS where it is elec-
tronically stored. Considering that all provinces are 
required to submit their monthly disease reports to 
the IMU, disease data obtained from the IMU in the 
DVS was considered not to be significantly biased 
with respect to reporting and highly likely to be rep-
resentative of the disease situation in the country.

The dataset consisted of 107 B. anaplasmosis occur-
rence point locations (longitude and latitude) of cases 
and deaths. The confirmed B. anaplasmosis cases and 
deaths were recorded from 2010 to 2011 covering 
most parts of Zimbabwe. The B. anaplasmosis occur-
rence map shows the presence only location points of 
the disease covering ~46% (27/59) of the country’s 
districts (Figure 2). The attributes associated with each 
anaplasmosis case included year and month, cattle 
owner’s name, province, district, land-use, nearest dip 
tank and its grid reference, point location (longitude 
and latitude), sex, and age. Bovine anaplasmosis cases 
were based on case history, clinical signs, and 
post-mortem findings by field veterinarians and labo-
ratory confirmed through microscopy. An anaplasmo-
sis case was defined as an animal presenting with 
signs of anorexia, fever, jaundice (yellow discoloura-
tion of mucous membranes) and progressive anaemia 
(pale mucous membranes), and one or more of the 

Table 1. Cattle distribution by province and agro-ecological 
regions.

Province
rainfall 
(mm) region Population Proportion

Manicaland >1000 i 700  000 13.08
Mashonaland 

east
750–1000 ii 800  000 14.95

Mashonaland 
Central

750–1000 ii 500  000 9.35

Mashonaland 
West

500–750 ii; iii 550  000 10.28

Midlands 500–750 iii; iV 650  000 12.15
Masvingo 450–650 iV 1  000  000 18.69
Matabeleland 

north
<450 V 550  000 10.28

Matabeleland 
South

<450 V 600  000 11.21

total 5  350  000 100

adapted from tavirimirwa et  al. (2013).

Figure 1. location of Zimbabwe in Southern africa, and the respective districts.
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other signs, such as difficulty breathing, rapid pulse, 
brown urine, loss of coordination, aggression, and 
decreased milk production. A death case was defined 
based on post-mortem findings of a markedly anae-
mic and jaundiced carcass, thin and watery blood, an 
enlarged spleen, and a distended gall bladder con-
taining thick brown or green bile. Anaplasmosis con-
firmation was based on a demonstration of the 
parasites on Giemsa-stained blood smears

The World Organisation for Animal Health (2021) 
observes that TBD cases captured by the DVS indi-
cate a very high level of under reporting of TBD 
cases despite the existence of standardized protocols 
for collection, verification, and publishing of official 
animal health information. This is attributable to the 
fact that cases diagnosed by private veterinary prac-
titioners and those attended to by farmers are rarely 
recorded in official databases (Department of 
Veterinary Services 2022). Furthermore, not all 
recorded cases have laboratory confirmation due to 
inadequate sampling equipment and microscopic 
diagnostic skills, lack of functional microscopes, and 
sample preparation reagents at district and sub-dis-
trict offices (Department of Veterinary Services 2022).

2.3.  Bioclimatic variables

The variables used in modelling B. anaplasmosis suit-
ability included rainfall, elevation, vegetation cover, 
and temperature (Table 2). The bio-climatic variables 
were selected based on their influence on the sur-
vival, reproduction, and questing rates of the tick 
vectors of anaplasmosis (Hapunik et  al. 2011). They 

provide favourable conditions for the life cycle of the 
disease tick vectors and thus have a preferably high 
predictive power in modelling the suitable habitats. 
The different temperature variables account for tem-
perature fluctuations and the sensitivity of the vector 
to extreme temperatures. Precipitation provides 
moisture for vegetation growth which is required by 
the tick vectors for their survival (Herrmann and 
Gern 2010).

2.4.  Effects of land-use and agro-ecological region 
on B. anaplasmosis occurrence

The analysis of variance (ANOVA) implemented 
through the MASS package in R (Ripley et  al. 2013) 
was used to test the effects of time, land-use, and 
agro-ecological regions on B. anaplasmosis morbidity 
and mortality. Furthermore, the Tukey’s Honest 
Significance difference (HSD) test was used to test 
which means were statistically different after ANOVA 
F-test showed a significant difference in means 
between the groups (McHugh 2011).

Agro-ecological zones (AEZs) provide a framework 
for agricultural production and thus determine land 
use patterns across Zimbabwe. Annual rainfall and 
agricultural production potential progressively 
decrease from AEZ 1 to AEZ 5 (Figure 3). AEZ I 
receive the highest amounts of rainfall and is the 
most productive in terms of crop farming while AEZ 
V receives the least amount of rainfall and is not 
suitable for rain-fed agriculture. In this regard, exten-
sive cattle production and game ranching are the 
predominant activities in AEZ V. AEZ 1 occupies 1.5% 

Figure 2. Bovine anaplasmosis occurrence in Zimbabwe from 2010 to 2011.
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of the country and predominates the eastern parts 
of the country which receives the highest amount of 
rainfall exceeding 1000 mm/year on average. AEZ II is 
divided into IIa and IIb and occupies 5.7 and 9.3% of 
central, north eastern, and eastern parts of the coun-
try. The main distinguishing feature of the two 
sub-regions is that AEZ IIb experiences more dry 
spells than AEZ IIa. AEZ III is located in the central, 
western, southern, and eastern parts of the country 
and covers over 16.2% of the country. In terms of 
area, AEZ IV is the second most extensive region and 
occupies 29.1% of the country, dominating the cen-
tral and western parts of the country and borders 
Regions III and V. The most extensive of the AEZ is 
AEZ V with AEZ Va and AEZ Vb occupying 29.4 and 
8.8%, respectively. AEZ V is the driest in the country 
and predominates the major river valleys of the 
southern, western, and northern fringes of the coun-
try whilst relative to AEZ Va, AEZ Vb is so dry that it 
cannot sustain any form of rainfed agriculture and is 
restricted to the southern-most parts of the country.

According to Moyo (2011), Zimbabwe has multi-
form land tenure system comprising freehold, lease, 
permit, communal, and state land). Communal areas 
have de facto rights delegated to communities 
(including chiefs), under the oversight of rural district 
councils. The Communal Areas cover 42% of 
Zimbabwe’s land where about 70% of the country’s 
population resides. On the other hand, large scale 
and small-scale commercial farmers occupy about 
32% of the country’s land under individual land own-
ership which guarantees exclusive property rights 
and full control and responsibility over the land and 
infrastructure. Resettlement Areas cover 10% of the 
country and were meant to de-congest the commu-
nal areas. A further 15% of the country’s land is 
gazetted as protected forests (2%) and national parks 
(13%) (Moyo 2011).

2.5.  Spatial distribution of anaplasmosis

The spatial and temporal distribution of morbidity 
and mortality was mapped per district. The frequency 
distribution showing the rate of the disease occur-
rence over the two year period was classified in 
ArcMap 10.8. The frequency values were grouped 
into five distinct classes using the equal interval 
classification.

In addition, the Gertis Ord GI* statistic (Equation 
1), calculated using ArcMap 10.8 was used to deter-
mine whether B. anaplasmosis morbidity and mor-
tality rates significantly cluster in space across 
districts of Zimbabwe. A cluster is an aggregation 
of points in space where the distance between two 
points is less than the distance between any other 
point in the cluster and any point not in it (Jacquez 
2000; Omodior et  al. 2019). A cluster of high values 
surrounded by high values is called a hotspot 
(Jacquez 2000; Omodior et  al. 2019). When features 
with high values are surrounded by features with 
high values a hotspot is statistically significant 
whereas when features with low values are sur-
rounded by features with low values a coldspot is 
statistically significant (Jacquez 2000; ESRI. 2014; 
Omodior et  al. 2019). When it is applied to a dis-
ease, clustering can be defined as an excess of 
reported cases in time, space, or both space and 
time (hotspots), or areas with fewer than expected 
cases (coldspots) (Jacquez 1996). The Gertis Ord Gi* 
is calculated using the following equation (ESRI.  
2014):

 Gi *
,
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wi xj x wij
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∑ ∑
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Table 2. Variables used in modelling of Bovine anaplasmosis suitability.
Bioclimate 
code Variable Description of variable

Bio1 annual mean temperature Difference between the hottest and coldest months taking monthly mean temperatures
Bio2 Mean diurnal range (Mean of monthly 

[max temp  −  min temp])
Difference between day and night temperatures

Bio3 isothermality (BiO2/BiO7) (*100) Quantifies how large the day to night temperatures oscillate relative to the summer to 
winter oscillations

Bio4 temperature seasonality (Standard 
deviation*100)

Difference between the annual maximum and minimum temperature

Bio5 Max temperature of warmest month Highest temperature recorded in the warmest month
Bio6 Min temperature of coldest month lowest temperature recorded in winter
Bio7 temperature annual range (BiO5-BiO6) Difference between the temperature of the warmest and coldest months of the year
Bio8 Mean temperature of wettest quarter lowest temperature recorded in wet season
Bio9 Mean temperature of driest quarter lowest temperature recorded in 3 dry months
Bio10 Mean temperature of warmest quarter lowest temperature recorded in the warmest month
Bio11 Mean temperature of coldest quarter lowest temperature recorded in the coldest month
Bio12 annual precipitation amount of precipitation expected per year
Bio13 Precipitation of wettest month amount of precipitation received during the wet season
Bio14 Precipitation of driest month amount of precipitation received during the dry season
Bio15 Precipitation seasonality (coefficient of 

variation)
Standard deviation of the monthly precipitation

Bio16 Precipitation of wettest quarter amount of precipitation received in a period of 3 months during a wet season
Bio17 Precipitation of the driest quarter amount of precipitation received in a period of 3 months during a driest season
Bio18 Precipitation of warmest quarter amount of precipitation received in a period of 3 months during a warmest season
Bio19 Precipitation of coldest quarter amount of precipitation received in a period of 3 months during a winter season
elev elevation Height above sea level
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Given that:

 x
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= =∑ 1
, 

and

 S
x j

n
x

j

n

= − ( )=∑ 1

2

 (2)

Where:

xj is the attribute value for feature j,
wij is the spatial weight between features i and j,
n is the total number of features,
x is the mean and s is the variance.

The resultant p-values and z-scores show areas of 
spatial clusters. The confidence interval levels (90, 95, 
and 99%) were used, in which higher confidence lev-
els represent intense hotspots or coldspots aggrega-
tion in the incidence of the disease. A strong hotspot 
is shown by a high positive z-score value meaning a 
relatively high disease incidence. For statistically sig-
nificant cold-spots, the z-score value is negative and 
low. Z scores >1.96 are considered as significant at 
99% confidence level (p < 0.01) and thus it is classi-
fied as a hotspot while Z-scores of < −1.96 are classi-
fied as coldspots (Omodior et  al. 2019).

2.6.  Bovine anaplasmosis variable selection for 
modelling

When using prediction models many variables can 
be used. However, some of the variables can be 

collinearly related. Variable selection therefore encom-
passes selecting variables to include in modelling, 
among the many, by removing those that are redun-
dant (Ratner 2010). The selection determines a set of 
variables that will provide the best fit for the model 
so that accurate predictions can be made (Ratner 
2010). Hence, to reduce data duplication and redun-
dancy a cut-off correlation coefficient of 0.90 was 
used in variable selection (Table 3). The final variables 
selected for modelling anaplasmosis distribution were 
annual mean temperature (Bio1), mean diurnal range 
(Bio2), isothermality (Bio3), temperature seasonality 
(Bio4), precipitation of driest month (Bio 14), precipita-
tion seasonality (Bio15), precipitation of wettest quar-
ter (Bio16), precipitation of warmest quarter (Bio17), 
precipitation of driest quarter (Bio18), precipitation of 
coldest quarter (Bio19) and elevation (Elev) (Figure 4).

The selected bio-climatic variables showed that 
areas in the northern, western, and southern parts of 
Zimbabwe have the highest mean annual tempera-
ture whereas eastern and central areas have low 
annual mean temperature. The highest mean diurnal 
range is experienced in the western whilst the east-
ern has the lowest. North-eastern and south-eastern 
regions have high isothermality as compared to the 
north-western region which has low. High tempera-
ture seasonality is in the western and south-western 
and relatively low in the north-eastern. Precipitation 
of the driest month and precipitation of coldest 
quarter is high in the eastern and south-eastern 
whilst low in all other parts of the country. A low 
precipitation seasonality and precipitation of wettest 
quarter is experienced in the southern and a high in 
the northern. Precipitation in the warmest quarter is 
high in the eastern and low in the northern. There is 

Figure 3. agro-ecological regions as delineated by Manatsa et  al. (2020).



VETERINARY QUARTERLY 7

a high elevation in the eastern and central and a low 
in the northern and southern.

2.7.  Bovine anaplasmosis suitability modelling

Ecological niche modelling was carried out using 
MaxEnt software (Phillips et  al. 2006). The output was 
the spatial distribution of B. anaplasmosis in Zimbabwe. 
MaxEnt uses a machine-learning technique called 
maximum entropy modelling. Of many species’ distri-
bution algorithms, MaxEnt has proved powerful when 
modelling rare species with narrow ranges and avail-
able scarce presence-only occurrence data (Phillips 
et  al. 2006). Several studies have successfully used 
MaxEnt, for example, Pearson et  al. (2007), Wisz et  al. 
(2008), Baldwin (2009), Rebelo and Jones (2010), 
Sardà-Palomera et  al. (2012), Marcer et  al. (2013). 
MaxEnt has also been used for modelling of TBDs 
(Raghavan et  al. 2016; Sage et  al. 2017; Zannou et  al. 
2021). As highlighted by Phillips et  al. (2006), the 
advantages of MaxEnt include: (1) the model requires 
only presence data, together with environmental 
information for the whole study area; (2) MaxEnt can 
utilize both continuous and categorical data, and can 
incorporate interactions between different variables; 
(3) efficient deterministic algorithms have been devel-
oped that converge to the optimal (maximum entropy) 
probability distribution; (4) the MaxEnt probability dis-
tribution has a concise mathematical definition, and is 
therefore amenable to analysis, and (5) over-fitting can 
be avoided by using -regularization.

2.8.  MaxEnt model evaluation

The area under the curve (AUC) of a receiver operat-
ing characteristic curve (ROC) was used for model 
performance validation as used by: Sage et  al. (2017) 
and Gomes et  al. (2018). A model with AUC values 
from 0.0 to 0.5 is considered poor, 0.6–0.9 useful, 
and above 0.9 excellent (Fan et  al. 2006; Jiménez-
Valverde et  al. 2008; Carter et  al. 2016).

3.  Results

3.1.  Effects of land-use and agro-ecological region 
on B. anaplasmosis occurrence

Results of this study show that between 2010 and 
2011 a total of 1781 B. anaplasmosis cases and 446 
deaths were recorded across the country. Of the 

reported cases, 1347 were treated during the period 
under consideration with more females (52%) being 
affected by the disease than males (48%). Age wise, 
adult and sub adult cattle (96%) were more suscepti-
ble to the disease than calves. ANOVA results showed 
that time as indicated by the month of the year sig-
nificantly influenced B. anaplasmosis occurrence cases 
(F11 = 4.049, p = 0.000) and deaths (F11 = 2.035, p = 0.034) 
with September experiencing the highest mean num-
ber of cases (Figure 5(a)) and deaths (Figure 5(b)). The 
mean number of cases and deaths in September were 
significantly (p < 0.05) different from all the other 
months except July and October. In contrast, land-use 
had no significant influence on mean anaplasmosis 
cases (F11 = 0.605, p = 0.679) and deaths (F11 = 0.565, 
p = 0.690). However, communal and resettlement areas 
recorded relatively non-significant (p > 0.05) higher 
mean numbers of both parameters compared to the 
other areas (Figures 6(a,b)). Similar findings were 
noted for cases (F11 = 0.537, p = 0.748) and deaths 
(F11 = 0.720, p = 0.573) according to agro-ecological 
regions (Figures 7(a,b)). However, agro-ecological 
region III recorded a relatively non-significant (p > 0.05) 
higher mean number of cases compared to others, 
and agro-ecological regions I, II, and IV had relatively 
non-significant (p > 0.05) higher mean numbers of 
deaths compared to others.

3.2.  Spatial variations in the occurrence of 
B. anaplasmosis

The spatial distribution of B. anaplasmosis showed 
that Kwekwe district had the highest frequency (18–
50 cases) while five districts (Binga, Gokwe-south, 
Gutu, Hurungwe, and Mutare) had a frequency of 
11–18 cases of the disease during the study period 
(Figure 8). Over 85% of the districts (53/59, 89.8%) 
had a low frequency (≤11) of anaplasmosis cases 
with most of them being in the western and 
north-eastern parts of the country. The death fre-
quency pattern of the disease was similar to that of 
the cases with Kwekwe recording the highest deaths 
and most districts (>90%) had ≤6 deaths (Figure 8).

3.3.  Hotspot analysis of B. anaplasmosis habitat 
suitability

Significant hotspots of anaplasmosis cases and 
deaths were recorded in only three central districts 
(Gokwe-south, Kwekwe, and Mutare) of the country. 

Table 3. Bioclimatic variables correlation results for variable selection.
Bio1 Bio2 Bio3 Bio4 Bio15 Bio16 Bio17 Bio18 Bio19 elev

Bio1 1
Bio2 0.47 1
Bio3 0.02 0.45 1
Bio4 −0.06 0.43 0.38 1
Bio15 0.36 0.12 −0.33 −0.42 1
Bio16 0.06 −0.25 −0.41 −0.50 0.66 1
Bio17 −0.17 −0.17 0.52 0.38 −0.51 −0.62 1
Bio18 −0.17 −0.06 0.36 0.08 0.37 0.42 −0.02 1
Bio19 −0.11 −0.04 0.36 0.36 −0.38 −0.40 0.30 −0.13 1
elev −0.51 −0.40 −0.36 −0.21 −0.21 0.05 −0.08 −0.05 0.01 1
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The coldspots (less than expected) for cases were 
observed in several districts (Binga, Chiredzi, Gutu, 
Chirumhanzu, Bindura, and Hurungwe). Similar to 
cases hotspots, deaths hotspots were noted in two 

districts (Kwekwe and Mutare) while the  
coldspots were located in Gokwe-north, Kariba, 
Bindura, Chiredzi, Chipinge, and Hurungwe 
(Figure 9).

Figure 4. the spatial distribution of selected bio-climatic variables in Zimbabwe.



VETERINARY QUARTERLY 9

3.4.  MaxENT model performance

The partial receiving operating characteristic (partial 
ROC) (Gomes et  al. 2018) was used for validating 
the results by making use of area under curve 
(AUC). The AUC criteria considered a model with 

values from 0.0 to 0.6 as inferior, 0.6–0.9 as useful, 
and >0.9 as excellent following Allouche et  al. 
(2006). The B. anaplasmosis suitability model had an 
AUC of >0.71 suggesting that the model is accept-
able (Figure 10).

Figure 5. (a) Variations in Bovine anaplasmosis CaSeS by month and (b) variations in B. anaplasmosis DeatHS by month.

Figure 6. (a) Variations in Bovine anaplasmosis CaSeS by land-use and (b) variations in B. anaplasmosis DeatHS by 
land-use.

Figure 7. (a) Variations in Bovine anaplasmosis cases by agro-ecological region and (b) variations in B. anaplasmosis deaths 
by agro-ecological region.
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3.5.  Bovine anaplasmosis suitability

Bovine anaplasmosis suitability modelling for 
Zimbabwe showed that 0.2% of Zimbabwe is highly 
suitable (>0.75 suitability score) for B. anaplasmosis 
occurrence and this is located in one north-western 
district of the country—Binga District (Figure 11). 
Approximately a quarter (24.7%) of the country is 
moderately suitable for B. anaplasmosis and it covers 
mostly central and north-eastern districts while 
34.9% is marginally suitable and is spread over dis-
tricts surrounding the moderately suitable areas. The 
lowly suitable, covering two-fifths (40.2%) of the 
country was found to be located in the southern, 
north-western, and some eastern and northern dis-
tricts. A total area of 59.8% of Zimbabwe is suitable 
for the disease occurrence (Figure 11).

3.6.  Bioclimatic variables of importance

Temperature seasonality (46%), precipitation season-
ality (22.8%), mean diurnal range (17.6%), and iso-
thermality (6.3%) were the most important predictor 
variables explaining more than 92% of the disease 

occurrence (Table 4). Overall, these results showed 
that temperature variables were more important in 
explaining the B. anaplasmosis disease suitability.

3.7  Relationship between environmental variables 
and B. anaplasmosis suitability

A non-linear relationship between temperature sea-
sonality and B. anaplasmosis suitability, with the suit-
ability increasing with increasing temperature 
seasonality observed for Zimbabwe (Figure 12(a)). 
Thereafter, increasing temperature seasonality (Bio-4) 
is negatively related to the disease suitability. The 
response curve (Figure 12(b)) shows a positive rela-
tionship between B. anaplasmosis and precipitation 
seasonality (Bio-15) especially from 85 to 105 mm. 
There was a nonlinear relationship between B. ana-
plasmosis and mean diurnal range (Bio-2) (Figure 
12(c)) having a positive relationship from 9.5 to 
15.2 °C and a negative relationship past this point. 
Figure 12 summarises the relationship between envi-
ronmental variables and B. anaplasmosis suitability.

Response curves as estimated from MAXENT 
showing log response of B. anaplasmosis suitability 

Figure 8. the spatial distribution of Bovine anaplasmosis (a) cases and (b) death.

Figure 9. Bovine anaplasmosis (a) cases and (b) death hotspots across Zimbabwean districts.
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Figure 10. Bovine anaplasmosis auC results.

Figure 11. Bovine anaplasmosis suitability across districts of Zimbabwe.

Table 4. relative contribution of the environmental variables in explaining the spatial variation in 
modelled Bovine anaplasmosis suitability in Zimbabwe.
Bioclimate code Variable Percentage contributions Permutations importance

Bio-4 temperature seasonality 46 50.2
Bio-15 Precipitation seasonality 22.8 2.3
Bio-2 Mean diurnal range 17.6 23.7
Bio-3 isothermality 6.3 9.9
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to environmental predictors. The probability of pres-
ence (logistic output) is shown on the y-axis while 
the range of the environmental predictor is shown 
on the x-axis (Gomes et  al. 2018). To prevent the 
interaction of variables affect the relationship mod-
elled, the response curves are based on univariate 
models which show one response at a time. Log 
Linear models are a type of generalized linear model 
that are used to model multinomial and ordinal data. 
They are also known as multinomial logit models, 
and they are used to model relationships between 
categorical variables (Gomes et  al. 2018).

4.  Discussion and conclusion

4.1.  Discussion

The study was aimed at mapping and modelling the 
spatio-temporal distribution of B. anaplasmosis in 
Zimbabwe and examine the main variables influenc-
ing its distribution. The observed pattern of occur-
rence showed that districts mostly in the central and 
north-eastern parts of the country with pockets in 
the western and northern parts were characterized 
by relatively higher morbidity and mortality rates 
due to the disease. Probably this was an indicator of 
a high probability of occurrence of B. anaplasmosis 
tick vectors in these areas. The presence of the tick 
vectors is a key determinant of the spatial distribu-
tion of the disease (Farooqi et  al. 2018).

Findings from the current study suggest that 
anaplasmosis cases and deaths tend to cluster in 
Kwekwe, Gokwe-south, Nkayi, Shamva, and Bindura 
districts. This indicates that B. anaplasmosis is not 
randomly distributed across the country. Disease 
clusters are likely to be associated with favourable 
environmental conditions that support the vector 
survival. However, cattle density cannot be ruled 
out and it is likely to be a contributing factor to the 
disease clusters since cattle have an association 
with tick distribution (Bariso and Worku 2018). This 
is because cattle species are one of the ideal hosts 
of ticks (Ostfeld and Brunner 2015). The higher the 
cattle population, the higher the chances of tick 
survival and this may result in high disease trans-
mission rates (Ostfeld and Brunner 2015).

However, despite ticks being attracted to high cat-
tle abundance areas, they are not prevalent in all 
areas of high cattle abundance because some areas 
do not offer preferred climatic conditions for the sur-
vival of ticks (Bariso and Worku 2018). A combination 
of cattle density and favourable environmental con-
ditions for the ticks most likely explains the presence 
of anaplasmosis clusters in certain areas and this 
requires further investigations. In support of the 
present findings, Shekede et  al. (2021) reported tick 
hotspots to be predominantly located in the north-
ern, north-eastern and southern parts of the country, 
which also coincides with the anaplasmosis cases 
and death hotspots identified in this study. 

Figure 12. the relationship between bio-climatic variables and disease suitability.
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Accordingly, identifying hotspots areas enhances 
knowledge on the implementation of targeted con-
trol of B. anaplasmosis through the construction of 
dip-tanks and allocation of acaricides in areas of high 
disease prevalence to reduce mortalities. It also helps 
in the establishment of veterinary service centres 
near disease hotspots areas so as to enhance early 
detection and treatment of affected animals.

Bovine anaplasmosis suitability across Zimbabwe 
showed some areas to be more suitable for the dis-
ease than others. The study identified high suitability 
to be located mostly in the central and north-eastern 
with some pockets in the western and northern 
parts and lowly suitable in the southern, north-west-
ern, and extreme east districts. The areas of high 
suitability are characterized by high temperatures 
and high rainfall which are favourable to the vector 
life cycle. However, very low temperatures, extremely 
high temperatures, and severe dry climatic condi-
tions lead to saturation deficit of ticks which results 
in decreased tick’s habitat suitability (Herrmann and 
Gern 2010; Tagwireyi et  al. 2022). This may probably 
result in very low suitability in other areas.

The study also revealed that environmental suit-
ability is primarily important in understanding B. 
anaplasmosis. Based on the ecology of B. anaplasmo-
sis, areas with conducive conditions for the survival 
of its vector explain high disease prevalence (Torina 
et  al. 2008). The present results demonstrate the 
value of collecting geo-referenced livestock health 
data, such as the B. anaplasmosis occurrence data 
used in modelling and mapping the suitability of the 
disease. The results can be successfully used to 
demarcate B. anaplasmosis risk zones for targeted 
disease control and preventive interventions.

In this study, temperature seasonality, precipita-
tion seasonality, mean diurnal range, and isother-
mality were found to be significant variables 
explaining the spatial suitability of anaplasmosis. 
Temperature and precipitation are crucial in the tick 
vector life cycle and create a favourable environ-
ment for the growth of ticks that transmit the dis-
ease (Torina et  al. 2008; Tagwireyi et  al. 2022). The 
vector ticks prefer high temperatures and high rain-
fall to thrive. The results are consistent with Johnson 
et  al. (2016) who also found the same factors to be 
relevant for predicting the suitability of the disease 
at a global scale. These conditions are more related 
to the tick’s microhabitat as they have a direct effect 
on the living conditions of ticks (Khalaf et  al. 2018; 
Zannou et  al. 2021; Tagwireyi et  al. 2022) and are 
characteristic of the areas found suitable for the 
disease.

Time (months) was shown to significantly influ-
ence B. anaplasmosis occurrence with July, September, 
and October experiencing the highest occurrence 
rates. Ticks have higher summer questing activity 
thereby increasing the rate of disease transmission 
during that period although occasional outbreaks 
can be identified during winter (Bhatnagar et  al. 
2015). Lower winter temperatures and humidity are 
less favourable for tick growth (Bhatnagar et  al. 

2015). However, Hapunik et  al. (2011) stated that 
high winter cases are likely to occur due to global 
warming, which increases the average temperature 
in the winter months.

Bovine anaplasmosis occurrence data for two years 
were used to provide important insights into the 
clustering of the disease in Zimbabwe. It integrated 
space and time (months) in one analytical framework 
to provide new insights into the epidemiology of B. 
anaplasmosis (Hanzlicek et  al. 2016). The technique 
used in this study, Getis-Ord Gi*statistic determines 
significant clustering. The current study used both 
bio-climatic variables and B. anaplasmosis occurrence 
data to model suitability which differs from former 
studies that used tick infestation data to predict dis-
ease suitability (Estrada-Peña et  al. 2009). The used 
bio-climatic variables have global spatial coverage 
and are easily accessible and obtainable for present 
or future climatic scenarios (Title and Bemmels 2018).

The current research is one of the earliest attempts 
to map the spread of B. anaplasmosis in Zimbabwe. 
This makes it easier to make inferences for the whole 
country compared to other studies (e.g. Buhnerkempe 
et  al. 2014; Hammac et  al. 2014) which had a conti-
nental and global scale focus. The study helps to 
gain knowledge about the spatial distribution of the 
disease in Zimbabwe, which can be used for the 
proper allocation of resources, to prioritize areas of 
greatest need and thus maximize disease control. 
The use of geospatial analysis is one of the main 
strengths of this study. Geospatial analysis in combi-
nation with bio-climatic modelling has been used 
productively in several studies (see: Yang et  al. 2005; 
Baldwin 2009; Rebelo and Jones 2010; Sardà-
Palomera et  al. 2012; Marcer et  al. 2013); using loca-
tion data in modelling and mapping disease 
distribution and hotspots.

The findings of this study should be viewed in the 
light of its limitations. Hence, some potential biases 
of the study need to be considered. The B. anaplas-
mosis cases and deaths detailed in this study include 
only those that were reported and confirmed by vet-
erinarians. Many other anaplasmosis cases and deaths 
could probably have not been reported by farmers. 
Hence, the reported cases and deaths in this study 
could be an underestimate of the problem and the 
reporting bias may influence the accuracy of the 
study outcomes. Despite this limitation, the study 
demonstrated clusters of occurrences of the 
anaplasmosis.

The modelling did not take into account the cattle 
population density in different parts of the country. 
The cattle population in Zimbabwe is estimated to 
vary between 4 and 5 million (Mashoko et  al. 2007) 
and the 2020/21 cattle census reported a population 
of ~5.5 million (Anonymous 2021). Based on the 
recent cattle population statistics, the percentage 
distribution varied from 10.4% for the north-eastern 
districts to 18.6% for the south-eastern districts. The 
central districts had a contribution of 18.4%, north-
ern 17.7%, north-western 12.4%, south-western 
11.5%, and eastern 11.2%. Cattle density cannot be 
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ruled out and it is likely to be a contributing factor 
to the observed disease clusters since there is an 
association between cattle and tick distribution 
(Worku et al. 2018). This is because cattle are reported 
to be one of the ideal hosts of ticks (Ostfeld and 
Brunner 2015). The higher the cattle population, the 
higher the chances of tick survival and this may 
result in high disease transmission rates (Ostfeld and 
Brunner 2015). The central districts with a relatively 
higher cattle population were also characterized by 
clusters of higher disease morbidity and mortality 
rates. However, despite, a lower contribution percent-
age, the north-eastern districts were also character-
ized by clusters of higher disease morbidity and 
mortality rates.

In addition, the current analysis is also limited by 
presence only data availability, which covered a 
period of two years. This makes it difficult to extrap-
olate for a longer time periods and to make tempo-
ral conclusions on the disease behaviour. Different 
time frames result in distinct disease patterns and 
rates due to the shifting of seasons and changes in 
climate (Hanzlicek et  al. 2016). As such, to gain more 
insights into the disease patterns, there is a need for 
long term data collection.

4.2.  Conclusion

This study mapped the spatial distribution, hotspots, 
determined significant bio-climatic variables and 
suitable areas for B. anaplasmosis across Zimbabwean 
districts. Results indicated spatial clusters of the dis-
ease in several districts in central and northern 
Zimbabwe with precipitation and temperature 
explaining more of the disease distribution in suit-
able areas. The results of this study provide insights 
into the management strategies and control of B. 
anaplasmosis in Zimbabwe. It is thus concluded that 
geo-spatial techniques, combined with ecological 
niche modelling can provide useful insights into dis-
ease prevalence, occurrence, and distribution.
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