Show simple item record

dc.contributor.authorOchieng, Raymond Calvin
dc.contributor.authorChikunji, Chiteng'A John
dc.contributor.authorOnyango-Otieno, Vitalis
dc.date.accessioned2023-05-05T08:02:50Z
dc.date.available2023-05-05T08:02:50Z
dc.date.issued2022-06-16
dc.identifier.citationOchieng, R. C., Chikunji, C. A. J., & Onyango-Otieno, V. (2022, June). Quadratic sequences in Pythagorean triples. In AIP Conference Proceedings (Vol. 2471, No. 1, p. 020015). AIP Publishing LLCen_US
dc.identifier.isbn978-073544339-6
dc.identifier.issn0094-243X
dc.identifier.issn1551-7616
dc.identifier.urihttps://aip.scitation.org/journal/apc
dc.identifier.uri10.1063/5.0082884
dc.identifier.urihttps://hdl.handle.net/13049/690
dc.description.abstractUsing the Euclid's formula, we obtain an alternative formula for generating Pythagorean triples, both primitive and non-primitive. It easy to classify Pythagorean triples using this formula based on the divisibility of the leg of a Pythagorean triple by any positive integer. The differences in lengths between the hypotenuse and the legs of a Pythagorean triple obtained by this alternative formula form Quadratic sequences. These quadratic sequences have applications in various fields such as tiling.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.ispartofseriesn AIP Conference Proceedings;(Vol. 2471, No. 1, p. 020015)
dc.titleQuadratic sequences in Pythagorean triplesen_US
dc.typeResearch articleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record