dc.contributor.author | Ochieng, Raymond Calvin | |
dc.contributor.author | Chikunji, Chiteng'A John | |
dc.contributor.author | Onyango-Otieno, Vitalis | |
dc.date.accessioned | 2023-05-05T08:02:50Z | |
dc.date.available | 2023-05-05T08:02:50Z | |
dc.date.issued | 2022-06-16 | |
dc.identifier.citation | Ochieng, R. C., Chikunji, C. A. J., & Onyango-Otieno, V. (2022, June). Quadratic sequences in Pythagorean triples. In AIP Conference Proceedings (Vol. 2471, No. 1, p. 020015). AIP Publishing LLC | en_US |
dc.identifier.isbn | 978-073544339-6 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.issn | 1551-7616 | |
dc.identifier.uri | https://aip.scitation.org/journal/apc | |
dc.identifier.uri | 10.1063/5.0082884 | |
dc.identifier.uri | https://hdl.handle.net/13049/690 | |
dc.description.abstract | Using the Euclid's formula, we obtain an alternative formula for generating Pythagorean triples, both primitive and non-primitive. It easy to classify Pythagorean triples using this formula based on the divisibility of the leg of a Pythagorean triple by any positive integer. The differences in lengths between the hypotenuse and the legs of a Pythagorean triple obtained by this alternative formula form Quadratic sequences. These quadratic sequences have applications in various fields such as tiling. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Physics | en_US |
dc.relation.ispartofseries | n AIP Conference Proceedings;(Vol. 2471, No. 1, p. 020015) | |
dc.title | Quadratic sequences in Pythagorean triples | en_US |
dc.type | Research article | en_US |